Cargando…

Microencapsulation of Erlotinib and Nanomagnetite Supported in Chitosan as Potential Oncologic Carrier

Microcapsules (MC) based on chitosan (CH) and including nano-magnetite and erlotinib were synthesized. The microparticles were characterized by SEM, FT-IR and TGA. The percentage of encapsulation was determined, as well as its microbiological activity. Finally, the effectiveness of the formulation w...

Descripción completa

Detalles Bibliográficos
Autores principales: Cárdenas-Triviño, Galo, Monsalve-Rozas, Sebastián, Vergara-González, Luis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070015/
https://www.ncbi.nlm.nih.gov/pubmed/33921305
http://dx.doi.org/10.3390/polym13081244
Descripción
Sumario:Microcapsules (MC) based on chitosan (CH) and including nano-magnetite and erlotinib were synthesized. The microparticles were characterized by SEM, FT-IR and TGA. The percentage of encapsulation was determined, as well as its microbiological activity. Finally, the effectiveness of the formulation was evaluated in terms of cell viability and/or toxicity when compared with the reference drug. The formulation used to prepare the microcapsules showed some bacteriostatic properties. The characterization of microcapsules exhibited amorphous spherical shape and average size of 1.29, 1.58 and 1.62 mm for chitosan, chitosan + nanomagnetite and chitosan + nanomagnetite + erlotinib, respectively. The infrared spectra showed characteristic bands of the erlotinib and magnetite, confirming its internalization. The thermogravimetric analyzes indicated that the materials do not undergo changes at optimum working temperatures. The HPLC analysis showed a 52% of encapsulation. Finally, the formulation probed had lower effectiveness and less cytotoxicity, than the drug without encapsulating “in vitro” studies. For that reason several assays are in progress.