Cargando…
Semantic Cardiac Segmentation in Chest CT Images Using K-Means Clustering and the Mathematical Morphology Method
Whole cardiac segmentation in chest CT images is important to identify functional abnormalities that occur in cardiovascular diseases, such as coronary artery disease (CAD) detection. However, manual efforts are time-consuming and labor intensive. Additionally, labeling the ground truth for cardiac...
Autores principales: | Rim, Beanbonyka, Lee, Sungjin, Lee, Ahyoung, Gil, Hyo-Wook, Hong, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070040/ https://www.ncbi.nlm.nih.gov/pubmed/33920219 http://dx.doi.org/10.3390/s21082675 |
Ejemplares similares
-
Deep-Learning-Based Coronary Artery Calcium Detection from CT Image
por: Lee, Sungjin, et al.
Publicado: (2021) -
Deep Learning in Multi-Class Lung Diseases’ Classification on Chest X-ray Images
por: Kim, Sungyeup, et al.
Publicado: (2022) -
Automated semantic lung segmentation in chest CT images using deep neural network
por: Murugappan, M., et al.
Publicado: (2023) -
Automated segmentation and description of the internal morphology of human permanent teeth by means of micro-CT
por: Haberthür, David, et al.
Publicado: (2021) -
A Novel Upsampling and Context Convolution for Image Semantic Segmentation
por: Sediqi, Khwaja Monib, et al.
Publicado: (2021)