Cargando…
Simultaneous Identification of EGFR, KRAS, ERBB2, and TP53 Mutations in Patients with Non-Small Cell Lung Cancer by Machine Learning-Derived Three-Dimensional Radiomics
SIMPLE SUMMARY: Multiple genetic mutations are associated with the outcomes of patients with non-small cell lung cancer (NSCLC) after using tyrosine kinase inhibitor, but the cost for detecting multiple genetic mutations is high. Few studies have investigated whether multiple genetic mutations can b...
Autores principales: | Zhang, Tiening, Xu, Zhihan, Liu, Guixue, Jiang, Beibei, de Bock, Geertruida H., Groen, Harry J. M., Vliegenthart, Rozemarijn, Xie, Xueqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070114/ https://www.ncbi.nlm.nih.gov/pubmed/33920322 http://dx.doi.org/10.3390/cancers13081814 |
Ejemplares similares
-
3D radiomics predicts EGFR mutation, exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma
por: Liu, Guixue, et al.
Publicado: (2020) -
Machine-Learning-Derived Nomogram Based on 3D Radiomic Features and Clinical Factors Predicts Progression-Free Survival in Lung Adenocarcinoma
por: Liu, Guixue, et al.
Publicado: (2021) -
Simplified molecular classification of lung adenocarcinomas based on EGFR, KRAS, and TP53 mutations
por: Ruiz-Cordero, Roberto, et al.
Publicado: (2020) -
KRAS and TP53 Mutations in Colorectal Carcinoma
por: Al-Kuraya, Khawla S.
Publicado: (2009) -
Development and multicenter validation of chest X-ray radiography interpretations based on natural language processing
por: Zhang, Yaping, et al.
Publicado: (2021)