Cargando…

Interactions between Blackcurrant Polyphenols and Food Macronutrients in Model Systems: In Vitro Digestion Studies

Blackcurrant pomace, rich in fiber and polyphenols, can be used as added-value ingredient for food formulation. However, the bounding of polyphenols to pomace and the interactions that take place with food nutrients modify polyphenol bioaccessibility. This work studied the interactions between polyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Diez-Sánchez, Elena, Quiles, Amparo, Hernando, Isabel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070145/
https://www.ncbi.nlm.nih.gov/pubmed/33924602
http://dx.doi.org/10.3390/foods10040847
Descripción
Sumario:Blackcurrant pomace, rich in fiber and polyphenols, can be used as added-value ingredient for food formulation. However, the bounding of polyphenols to pomace and the interactions that take place with food nutrients modify polyphenol bioaccessibility. This work studied the interactions between polyphenols and the main macronutrients in foods, and the changes that occurred during in vitro digestion, using model systems. Model systems were formulated with (i) water, (ii) wheat starch, (iii) olive oil, (iv) whey protein, and (v) a model combining all the ingredients. Polyphenols were added from two sources: as pomace and as a polyphenolic pomace extract. Interactions between polyphenols and macronutrients were studied using light microscopy; total phenolic content (TPC) and antioxidant capacity (AC) were determined before and after the in vitro digestion process. Lastly, the bioaccessibility of the samples was calculated. Polyphenols incorporated into the model systems as pomace increased their bioaccessibility if compared to polyphenols added as extract. For single-nutrient model systems formulated with pomace, the bioaccessibility was higher than when the system contained all the nutrients. Of all the components studied, the greatest effect on bioaccessibility was observed for proteins.