Cargando…
Radiomic Feature Reduction Approach to Predict Breast Cancer by Contrast-Enhanced Spectral Mammography Images
Contrast-enhanced spectral mammography (CESM) is an advanced instrument for breast care that is still operator dependent. The aim of this paper is the proposal of an automated system able to discriminate benign and malignant breast lesions based on radiomic analysis. We selected a set of 58 regions...
Autores principales: | Massafra, Raffaella, Bove, Samantha, Lorusso, Vito, Biafora, Albino, Comes, Maria Colomba, Didonna, Vittorio, Diotaiuti, Sergio, Fanizzi, Annarita, Nardone, Annalisa, Nolasco, Angelo, Ressa, Cosmo Maurizio, Tamborra, Pasquale, Terenzio, Antonella, La Forgia, Daniele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070152/ https://www.ncbi.nlm.nih.gov/pubmed/33920221 http://dx.doi.org/10.3390/diagnostics11040684 |
Ejemplares similares
-
Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs
por: Comes, Maria Colomba, et al.
Publicado: (2021) -
A machine learning ensemble approach for 5- and 10-year breast cancer invasive disease event classification
por: Massafra, Raffaella, et al.
Publicado: (2022) -
Radiomic Analysis in Contrast-Enhanced Spectral Mammography for Predicting Breast Cancer Histological Outcome
por: La Forgia, Daniele, et al.
Publicado: (2020) -
Radiomics Analysis on Contrast-Enhanced Spectral Mammography Images for Breast Cancer Diagnosis: A Pilot Study
por: Losurdo, Liliana, et al.
Publicado: (2019) -
Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
por: Massafra, Raffaella, et al.
Publicado: (2023)