Cargando…

Phenelzine and Amoxapine Inhibit Tyramine and d-Glucuronic Acid Catabolism in Clinically Significant Salmonella in A Serotype-Independent Manner

Non-typhoidal Salmonella ingeniously scavenges energy for growth from tyramine (TYR) and d-glucuronic acid (DGA), both of which occur in the host as the metabolic byproducts of the gut microbial metabolism. A critical first step in energy scavenging from TYR and DGA in Salmonella involves TYR-oxidat...

Descripción completa

Detalles Bibliográficos
Autores principales: Burin, Raquel, Shah, Devendra H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070173/
https://www.ncbi.nlm.nih.gov/pubmed/33924374
http://dx.doi.org/10.3390/pathogens10040469
_version_ 1783683408667344896
author Burin, Raquel
Shah, Devendra H.
author_facet Burin, Raquel
Shah, Devendra H.
author_sort Burin, Raquel
collection PubMed
description Non-typhoidal Salmonella ingeniously scavenges energy for growth from tyramine (TYR) and d-glucuronic acid (DGA), both of which occur in the host as the metabolic byproducts of the gut microbial metabolism. A critical first step in energy scavenging from TYR and DGA in Salmonella involves TYR-oxidation via TYR-oxidoreductase and production of free-DGA via β-glucuronidase (GUS)-mediated hydrolysis of d-glucuronides (conjugated form of DGA), respectively. Here, we report that Salmonella utilizes TYR and DGA as sole sources of energy in a serotype-independent manner. Using colorimetric and radiometric approaches, we report that genes SEN2971, SEN3065, and SEN2426 encode TYR-oxidoreductases. Some Salmonella serotypes produce GUS, thus can also scavenge energy from d-glucuronides. We repurposed phenelzine (monoaminoxidase-inhibitor) and amoxapine (GUS-inhibitor) to inhibit the TYR-oxidoreductases and GUS encoded by Salmonella, respectively. We show that phenelzine significantly inhibits the growth of Salmonella by inhibiting TYR-oxidoreductases SEN2971, SEN3065, and SEN2426. Similarly, amoxapine significantly inhibits the growth of Salmonella by inhibiting GUS-mediated hydrolysis of d-glucuronides. Because TYR and DGA serve as potential energy sources for Salmonella growth in vivo, the data and the novel approaches used here provides a better understanding of the role of TYR and DGA in Salmonella pathogenesis and nutritional virulence.
format Online
Article
Text
id pubmed-8070173
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80701732021-04-26 Phenelzine and Amoxapine Inhibit Tyramine and d-Glucuronic Acid Catabolism in Clinically Significant Salmonella in A Serotype-Independent Manner Burin, Raquel Shah, Devendra H. Pathogens Article Non-typhoidal Salmonella ingeniously scavenges energy for growth from tyramine (TYR) and d-glucuronic acid (DGA), both of which occur in the host as the metabolic byproducts of the gut microbial metabolism. A critical first step in energy scavenging from TYR and DGA in Salmonella involves TYR-oxidation via TYR-oxidoreductase and production of free-DGA via β-glucuronidase (GUS)-mediated hydrolysis of d-glucuronides (conjugated form of DGA), respectively. Here, we report that Salmonella utilizes TYR and DGA as sole sources of energy in a serotype-independent manner. Using colorimetric and radiometric approaches, we report that genes SEN2971, SEN3065, and SEN2426 encode TYR-oxidoreductases. Some Salmonella serotypes produce GUS, thus can also scavenge energy from d-glucuronides. We repurposed phenelzine (monoaminoxidase-inhibitor) and amoxapine (GUS-inhibitor) to inhibit the TYR-oxidoreductases and GUS encoded by Salmonella, respectively. We show that phenelzine significantly inhibits the growth of Salmonella by inhibiting TYR-oxidoreductases SEN2971, SEN3065, and SEN2426. Similarly, amoxapine significantly inhibits the growth of Salmonella by inhibiting GUS-mediated hydrolysis of d-glucuronides. Because TYR and DGA serve as potential energy sources for Salmonella growth in vivo, the data and the novel approaches used here provides a better understanding of the role of TYR and DGA in Salmonella pathogenesis and nutritional virulence. MDPI 2021-04-13 /pmc/articles/PMC8070173/ /pubmed/33924374 http://dx.doi.org/10.3390/pathogens10040469 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Burin, Raquel
Shah, Devendra H.
Phenelzine and Amoxapine Inhibit Tyramine and d-Glucuronic Acid Catabolism in Clinically Significant Salmonella in A Serotype-Independent Manner
title Phenelzine and Amoxapine Inhibit Tyramine and d-Glucuronic Acid Catabolism in Clinically Significant Salmonella in A Serotype-Independent Manner
title_full Phenelzine and Amoxapine Inhibit Tyramine and d-Glucuronic Acid Catabolism in Clinically Significant Salmonella in A Serotype-Independent Manner
title_fullStr Phenelzine and Amoxapine Inhibit Tyramine and d-Glucuronic Acid Catabolism in Clinically Significant Salmonella in A Serotype-Independent Manner
title_full_unstemmed Phenelzine and Amoxapine Inhibit Tyramine and d-Glucuronic Acid Catabolism in Clinically Significant Salmonella in A Serotype-Independent Manner
title_short Phenelzine and Amoxapine Inhibit Tyramine and d-Glucuronic Acid Catabolism in Clinically Significant Salmonella in A Serotype-Independent Manner
title_sort phenelzine and amoxapine inhibit tyramine and d-glucuronic acid catabolism in clinically significant salmonella in a serotype-independent manner
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070173/
https://www.ncbi.nlm.nih.gov/pubmed/33924374
http://dx.doi.org/10.3390/pathogens10040469
work_keys_str_mv AT burinraquel phenelzineandamoxapineinhibittyramineanddglucuronicacidcatabolisminclinicallysignificantsalmonellainaserotypeindependentmanner
AT shahdevendrah phenelzineandamoxapineinhibittyramineanddglucuronicacidcatabolisminclinicallysignificantsalmonellainaserotypeindependentmanner