Cargando…
Autosegmentation of Prostate Zones and Cancer Regions from Biparametric Magnetic Resonance Images by Using Deep-Learning-Based Neural Networks
The accuracy in diagnosing prostate cancer (PCa) has increased with the development of multiparametric magnetic resonance imaging (mpMRI). Biparametric magnetic resonance imaging (bpMRI) was found to have a diagnostic accuracy comparable to mpMRI in detecting PCa. However, prostate MRI assessment re...
Autores principales: | Lai, Chih-Ching, Wang, Hsin-Kai, Wang, Fu-Nien, Peng, Yu-Ching, Lin, Tzu-Ping, Peng, Hsu-Hsia, Shen, Shu-Huei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070192/ https://www.ncbi.nlm.nih.gov/pubmed/33921451 http://dx.doi.org/10.3390/s21082709 |
Ejemplares similares
-
Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy
por: Byun, Hwa Kyung, et al.
Publicado: (2021) -
Assessment of the Diagnostic Accuracy of Biparametric Magnetic Resonance Imaging for Prostate Cancer in Biopsy-Naive Men: The Biparametric MRI for Detection of Prostate Cancer (BIDOC) Study
por: Boesen, Lars, et al.
Publicado: (2018) -
Short review of biparametric prostate MRI
por: Steinkohl, Fabian, et al.
Publicado: (2018) -
Autosegmentation of the rectum on megavoltage image guidance scans
por: Shelley, L E A, et al.
Publicado: (2019) -
An attention base U-net for parotid tumor autosegmentation
por: Xia, Xianwu, et al.
Publicado: (2022)