Cargando…

Molecular Dynamics Simulation for Evaluating Fracture Entropy of a Polymer Material under Various Combined Stress States

Herein, the stress-state dependence of fracture entropy for a polyamide 6 material is investigated through molecular dynamics simulations. Although previous research suggests that a constant entropy increase can be universally applied for the definition of material fracture, the dependence of stress...

Descripción completa

Detalles Bibliográficos
Autores principales: Takase, Naohiro, Koyanagi, Jun, Mori, Kazuki, Sakai, Takenobu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070208/
https://www.ncbi.nlm.nih.gov/pubmed/33920091
http://dx.doi.org/10.3390/ma14081884
Descripción
Sumario:Herein, the stress-state dependence of fracture entropy for a polyamide 6 material is investigated through molecular dynamics simulations. Although previous research suggests that a constant entropy increase can be universally applied for the definition of material fracture, the dependence of stress triaxiality has not yet been discussed. In this study, entropy values are evaluated by molecular dynamics simulations with varied combined stress states. The calculation is implemented using the 570,000 all-atom model. Similar entropy values are obtained independently of stress triaxiality. This study also reveals the relationship between material damage, which is correlated with void size, and the entropy value.