Cargando…

Contribution of Antigen-Processing Machinery Genetic Polymorphisms to Atopic Dermatitis

Atopic dermatitis (AD) is a chronic and recurrent inflammatory dermatosis. We recently described an association of the C allele of the single nucleotide polymorphism (SNP) rs26618 in the ERAP1 gene and a synergism of ERAP1 and ERAP2 effects on AD risk. Here, we examined whether polymorphisms of othe...

Descripción completa

Detalles Bibliográficos
Autores principales: Niepiekło-Miniewska, Wanda, Matusiak, Łukasz, Narbutt, Joanna, Lesiak, Alekandra, Kuna, Piotr, Wiśniewski, Andrzej, Kuśnierczyk, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070454/
https://www.ncbi.nlm.nih.gov/pubmed/33920176
http://dx.doi.org/10.3390/life11040333
Descripción
Sumario:Atopic dermatitis (AD) is a chronic and recurrent inflammatory dermatosis. We recently described an association of the C allele of the single nucleotide polymorphism (SNP) rs26618 in the ERAP1 gene and a synergism of ERAP1 and ERAP2 effects on AD risk. Here, we examined whether polymorphisms of other antigen-presenting machinery genes encoding immunoproteasome components LMP2 and LMP7 and peptide transporter components TAP1 and TAP2 may also affect susceptibility to AD or its outcome. We found that the LMP7 rs2071543*T allele decreased disease risk by about 1.5-fold (odds ratio 0.66, 95% confidence interval 0.44–0.99). On the other hand, the LMP2 rs1351383*C allele reduced the mean age at diagnosis from 23 to 15 years (p < 0.001). Similarly, the TAP1 rs1135216*C allele decreased the mean age at diagnosis from almost 20 to 14 years (p = 0.033). The results are discussed in light of other reports on the role of these polymorphisms in human disease.