Cargando…
A Cascade Graph Convolutional Network for Predicting Protein–Ligand Binding Affinity
Accurate prediction of binding affinity between protein and ligand is a very important step in the field of drug discovery. Although there are many methods based on different assumptions and rules do exist, prediction performance of protein–ligand binding affinity is not satisfactory so far. This pa...
Autores principales: | Shen, Huimin, Zhang, Youzhi, Zheng, Chunhou, Wang, Bing, Chen, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070477/ https://www.ncbi.nlm.nih.gov/pubmed/33919681 http://dx.doi.org/10.3390/ijms22084023 |
Ejemplares similares
-
Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities
por: Son, Jeongtae, et al.
Publicado: (2021) -
Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network
por: Cao, Ruifen, et al.
Publicado: (2022) -
GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction
por: Wang, Kaili, et al.
Publicado: (2023) -
SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2021) -
CurvAGN: Curvature-based Adaptive Graph Neural Networks for Predicting Protein-Ligand Binding Affinity
por: Wu, Jianqiu, et al.
Publicado: (2023)