Cargando…
Crystal Structure Determination of 4-[(Di-p-tolyl-amino)-benzylidene]-(5-pyridin-4-yl-[1,3,4]thiadiazol-2-yl)-imine along with Selected Properties of Imine in Neutral and Protonated Form with Camforosulphonic Acid: Theoretical and Experimental Studies
The crystal structure was determined for the first time for 4-[(di-p-tolyl-amino)benzylidene]-(5-pyridin-4-yl-[1,3,4]thiadiazol-2-yl)-imine (trans-PPL9) by X-ray diffraction. The imine crystallized in the monoclinic P2(1)/n space group with a = 18.9567(7) Å, b = 6.18597(17) Å, c = 22.5897(7) Å, and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070542/ https://www.ncbi.nlm.nih.gov/pubmed/33924588 http://dx.doi.org/10.3390/ma14081952 |
Sumario: | The crystal structure was determined for the first time for 4-[(di-p-tolyl-amino)benzylidene]-(5-pyridin-4-yl-[1,3,4]thiadiazol-2-yl)-imine (trans-PPL9) by X-ray diffraction. The imine crystallized in the monoclinic P2(1)/n space group with a = 18.9567(7) Å, b = 6.18597(17) Å, c = 22.5897(7) Å, and β = 114.009(4)°. Intermolecular interactions in the PPL9 crystal were only weak C−H⋯N hydrogen bonds investigated using the Hirshfeld surface. The electronic and geometric structure of the imine were investigated by the density functional theory and the time-dependent density-functional theory. The properties of the imine in neutral and protonated form with camforosulphonic acid (CSA) were investigated using cyclic voltammetry, UV–vis and (1)H NMR spectroscopy. Theoretical and experimental studies showed that for the 1:1 molar ratio the protonation occured on nitrogen in pyridine in the PPL9 structure, as an effect of Brönsted acid–base interactions. Thermographic camera was used to defined defects in constructed simple devices with ITO/PPL9 (or PPL9:CSA)/Ag/ITO architecture. In conclusion, a thermally stable imine was synthesized in crystalline form and by CSA doping, a modification of absorption spectra together with reduction of overheating process was observed, suggesting its potential application in optoelectronics. |
---|