Cargando…

Misshapen Disruption Cooperates with Ras(V12) to Drive Tumorigenesis

Although RAS family genes play essential roles in tumorigenesis, effective treatments targeting RAS-related tumors are lacking, partly because of an incomplete understanding of the complex signaling crosstalk within RAS-related tumors. Here, we performed a large-scale genetic screen in Drosophila ey...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Du, Lu, Jin-Yu, Li, Xiaoqin, Zhao, Sihua, Xu, Wenyan, Fang, Jinan, Wang, Xing, Ma, Xianjue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070713/
https://www.ncbi.nlm.nih.gov/pubmed/33919765
http://dx.doi.org/10.3390/cells10040894
Descripción
Sumario:Although RAS family genes play essential roles in tumorigenesis, effective treatments targeting RAS-related tumors are lacking, partly because of an incomplete understanding of the complex signaling crosstalk within RAS-related tumors. Here, we performed a large-scale genetic screen in Drosophila eye imaginal discs and identified Misshapen (Msn) as a tumor suppressor that synergizes with oncogenic Ras (Ras(V12)) to induce c-Jun N-terminal kinase (JNK) activation and Hippo inactivation, then subsequently leads to tumor overgrowth and invasion. Moreover, ectopic Msn expression activates Hippo signaling pathway and suppresses Hippo signaling disruption-induced overgrowth. Importantly, we further found that Msn acts downstream of protocadherin Fat (Ft) to regulate Hippo signaling. Finally, we identified msn as a Yki/Sd target gene that regulates Hippo pathway in a negative feedback manner. Together, our findings identified Msn as a tumor suppressor and provide a novel insight into RAS-related tumorigenesis that may be relevant to human cancer biology.