Cargando…
Wavelet Scattering and Neural Networks for Railhead Defect Identification
Accurate and automatic railhead inspection is crucial for the operational safety of railway systems. Deep learning on visual images is effective in the automatic detection of railhead defects, but either intensive data requirements or ignoring defect sizes reduce its applicability. This paper develo...
Autor principal: | Jin, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070735/ https://www.ncbi.nlm.nih.gov/pubmed/33919718 http://dx.doi.org/10.3390/ma14081957 |
Ejemplares similares
-
From Railhead to Base Hospital on an Ambulance Train
Publicado: (1916) -
Non-Contact Inspection of Railhead via Laser-Generated Rayleigh Waves and an Enhanced Matching Pursuit to Assist Detection of Surface and Subsurface Defects
por: Ghafoor, Imran, et al.
Publicado: (2021) -
Measuring Acoustic Roughness of a Longitudinal Railhead Profile Using a Multi-Sensor Integration Technique
por: Jeong, Dahae, et al.
Publicado: (2019) -
Fractional Wavelet-Based Generative Scattering Networks
por: Wu, Jiasong, et al.
Publicado: (2021) -
Ultrasonic based concrete defects identification via wavelet packet transform and GA-BP neural network
por: Hu, Tianyu, et al.
Publicado: (2021)