Cargando…
Development of Machine Learning Models to Predict Platinum Sensitivity of High-Grade Serous Ovarian Carcinoma
SIMPLE SUMMARY: High-grade serous ovarian carcinoma (HGSOC) is the most aggressive histologic type of epithelial ovarian cancer, associated with high recurrence and mortality rates despite standard treatment. In accordance with the era of precision cancer medicine, we aimed to develop machine learni...
Autores principales: | Hwangbo, Suhyun, Kim, Se Ik, Kim, Ju-Hyun, Eoh, Kyung Jin, Lee, Chanhee, Kim, Young Tae, Suh, Dae-Shik, Park, Taesung, Song, Yong Sang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070756/ https://www.ncbi.nlm.nih.gov/pubmed/33919797 http://dx.doi.org/10.3390/cancers13081875 |
Ejemplares similares
-
Proteomic Discovery of Plasma Protein Biomarkers and Development of Models Predicting Prognosis of High-Grade Serous Ovarian Carcinoma
por: Kim, Se Ik, et al.
Publicado: (2023) -
Development of Web-Based Nomograms to Predict Treatment Response and Prognosis of Epithelial Ovarian Cancer
por: Kim, Se Ik, et al.
Publicado: (2019) -
Trends in the Incidence and Survival Rates of Primary Ovarian Clear Cell Carcinoma Compared to Ovarian Serous Carcinoma in Korea
por: Kim, Se Ik, et al.
Publicado: (2022) -
Mutation landscape of germline and somatic BRCA1/2 in patients with high-grade serous ovarian cancer
por: Eoh, Kyung Jin, et al.
Publicado: (2020) -
PARP inhibitors in platinum-sensitive high-grade serous ovarian cancer
por: Morgan, Robert D., et al.
Publicado: (2018)