Cargando…

Autofluorescence Imaging of Treatment Response in Neuroendocrine Tumor Organoids

SIMPLE SUMMARY: Gastroenteropancreatic neuroendocrine tumors (GEP-NET) account for roughly 60% of all neuroendocrine tumors, and low/intermediate grade human GEP-NETs have relatively slow growth rates that many laboratory culture methods fail to capture. Patient-derived cancer organoids (PDCOs) are...

Descripción completa

Detalles Bibliográficos
Autores principales: Gillette, Amani A., Babiarz, Christopher P., VanDommelen, Ava R., Pasch, Cheri A., Clipson, Linda, Matkowskyj, Kristina A., Deming, Dustin A., Skala, Melissa C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070804/
https://www.ncbi.nlm.nih.gov/pubmed/33919802
http://dx.doi.org/10.3390/cancers13081873
Descripción
Sumario:SIMPLE SUMMARY: Gastroenteropancreatic neuroendocrine tumors (GEP-NET) account for roughly 60% of all neuroendocrine tumors, and low/intermediate grade human GEP-NETs have relatively slow growth rates that many laboratory culture methods fail to capture. Patient-derived cancer organoids (PDCOs) are an attractive model to address this need for relevant 3D cultures of GEP-NETs for laboratory drug testing. However, traditional measurements of drug response are not effective in GEP-NET PDCOs due to the small volume of tissue and slow growth rates that are characteristic of the disease. Here, we test a label-free, non-destructive optical metabolic imaging (OMI) method to measure drug response in live GEP-NET PDCOs. OMI measured a response to the novel treatment combination of ABT-263 and everolimus in five out of seven PDCO lines, at 72 h post-treatment. Overall, this work shows that OMI provides single-cell metabolic measurements of drug response in PDCOs to guide drug development for GEP-NET patients. ABSTRACT: Gastroenteropancreatic neuroendocrine tumors (GEP-NET) account for roughly 60% of all neuroendocrine tumors. Low/intermediate grade human GEP-NETs have relatively low proliferation rates that animal models and cell lines fail to recapitulate. Short-term patient-derived cancer organoids (PDCOs) are a 3D model system that holds great promise for recapitulating well-differentiated human GEP-NETs. However, traditional measurements of drug response (i.e., growth, proliferation) are not effective in GEP-NET PDCOs due to the small volume of tissue and low proliferation rates that are characteristic of the disease. Here, we test a label-free, non-destructive optical metabolic imaging (OMI) method to measure drug response in live GEP-NET PDCOs. OMI captures the fluorescence lifetime and intensity of endogenous metabolic cofactors NAD(P)H and FAD. OMI has previously provided accurate predictions of drug response on a single cell level in other cancer types, but this is the first study to apply OMI to GEP-NETs. OMI tested the response to novel drug combination on GEP-NET PDCOs, specifically ABT263 (navitoclax), a Bcl-2 family inhibitor, and everolimus, a standard GEP-NET treatment that inhibits mTOR. Treatment response to ABT263, everolimus, and the combination were tested in GEP-NET PDCO lines derived from seven patients, using two-photon OMI. OMI measured a response to the combination treatment in 5 PDCO lines, at 72 h post-treatment. In one of the non-responsive PDCO lines, heterogeneous response was identified with two distinct subpopulations of cell metabolism. Overall, this work shows that OMI provides single-cell metabolic measurements of drug response in PDCOs to guide drug development for GEP-NET patients.