Cargando…
Study on Human Activity Recognition Using Semi-Supervised Active Transfer Learning
In recent years, various studies have begun to use deep learning models to conduct research in the field of human activity recognition (HAR). However, there has been a severe lag in the absolute development of such models since training deep learning models require a lot of labeled data. In fields s...
Autores principales: | Oh, Seungmin, Ashiquzzaman, Akm, Lee, Dongsu, Kim, Yeonggwang, Kim, Jinsul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070833/ https://www.ncbi.nlm.nih.gov/pubmed/33919823 http://dx.doi.org/10.3390/s21082760 |
Ejemplares similares
-
Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition
por: Yang, Sung-Hyun, et al.
Publicado: (2022) -
Semi-Supervised Adversarial Auto-Encoder to Expedite Human Activity Recognition
por: Thapa, Keshav, et al.
Publicado: (2023) -
Human Activity Recognition Using Semi-supervised Multi-modal DEC for Instagram Data
por: Kim, Dongmin, et al.
Publicado: (2020) -
A Semi-Supervised Transfer Learning with Dynamic Associate Domain Adaptation for Human Activity Recognition Using WiFi Signals †
por: Chen, Yuh-Shyan, et al.
Publicado: (2021) -
Instance segmentation using semi-supervised learning for fire recognition
por: Sun, Guangmin, et al.
Publicado: (2022)