Cargando…

Visual Diagnosis of the Varroa Destructor Parasitic Mite in Honeybees Using Object Detector Techniques

The Varroa destructor mite is one of the most dangerous Honey Bee (Apis mellifera) parasites worldwide and the bee colonies have to be regularly monitored in order to control its spread. In this paper we present an object detector based method for health state monitoring of bee colonies. This method...

Descripción completa

Detalles Bibliográficos
Autores principales: Bilik, Simon, Kratochvila, Lukas, Ligocki, Adam, Bostik, Ondrej, Zemcik, Tomas, Hybl, Matous, Horak, Karel, Zalud, Ludek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070960/
https://www.ncbi.nlm.nih.gov/pubmed/33919886
http://dx.doi.org/10.3390/s21082764
_version_ 1783683589979766784
author Bilik, Simon
Kratochvila, Lukas
Ligocki, Adam
Bostik, Ondrej
Zemcik, Tomas
Hybl, Matous
Horak, Karel
Zalud, Ludek
author_facet Bilik, Simon
Kratochvila, Lukas
Ligocki, Adam
Bostik, Ondrej
Zemcik, Tomas
Hybl, Matous
Horak, Karel
Zalud, Ludek
author_sort Bilik, Simon
collection PubMed
description The Varroa destructor mite is one of the most dangerous Honey Bee (Apis mellifera) parasites worldwide and the bee colonies have to be regularly monitored in order to control its spread. In this paper we present an object detector based method for health state monitoring of bee colonies. This method has the potential for online measurement and processing. In our experiment, we compare the YOLO and SSD object detectors along with the Deep SVDD anomaly detector. Based on the custom dataset with 600 ground-truth images of healthy and infected bees in various scenes, the detectors reached the highest F1 score up to 0.874 in the infected bee detection and up to 0.714 in the detection of the Varroa destructor mite itself. The results demonstrate the potential of this approach, which will be later used in the real-time computer vision based honey bee inspection system. To the best of our knowledge, this study is the first one using object detectors for the Varroa destructor mite detection on a honey bee. We expect that performance of those object detectors will enable us to inspect the health status of the honey bee colonies in real time.
format Online
Article
Text
id pubmed-8070960
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80709602021-04-26 Visual Diagnosis of the Varroa Destructor Parasitic Mite in Honeybees Using Object Detector Techniques Bilik, Simon Kratochvila, Lukas Ligocki, Adam Bostik, Ondrej Zemcik, Tomas Hybl, Matous Horak, Karel Zalud, Ludek Sensors (Basel) Article The Varroa destructor mite is one of the most dangerous Honey Bee (Apis mellifera) parasites worldwide and the bee colonies have to be regularly monitored in order to control its spread. In this paper we present an object detector based method for health state monitoring of bee colonies. This method has the potential for online measurement and processing. In our experiment, we compare the YOLO and SSD object detectors along with the Deep SVDD anomaly detector. Based on the custom dataset with 600 ground-truth images of healthy and infected bees in various scenes, the detectors reached the highest F1 score up to 0.874 in the infected bee detection and up to 0.714 in the detection of the Varroa destructor mite itself. The results demonstrate the potential of this approach, which will be later used in the real-time computer vision based honey bee inspection system. To the best of our knowledge, this study is the first one using object detectors for the Varroa destructor mite detection on a honey bee. We expect that performance of those object detectors will enable us to inspect the health status of the honey bee colonies in real time. MDPI 2021-04-14 /pmc/articles/PMC8070960/ /pubmed/33919886 http://dx.doi.org/10.3390/s21082764 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bilik, Simon
Kratochvila, Lukas
Ligocki, Adam
Bostik, Ondrej
Zemcik, Tomas
Hybl, Matous
Horak, Karel
Zalud, Ludek
Visual Diagnosis of the Varroa Destructor Parasitic Mite in Honeybees Using Object Detector Techniques
title Visual Diagnosis of the Varroa Destructor Parasitic Mite in Honeybees Using Object Detector Techniques
title_full Visual Diagnosis of the Varroa Destructor Parasitic Mite in Honeybees Using Object Detector Techniques
title_fullStr Visual Diagnosis of the Varroa Destructor Parasitic Mite in Honeybees Using Object Detector Techniques
title_full_unstemmed Visual Diagnosis of the Varroa Destructor Parasitic Mite in Honeybees Using Object Detector Techniques
title_short Visual Diagnosis of the Varroa Destructor Parasitic Mite in Honeybees Using Object Detector Techniques
title_sort visual diagnosis of the varroa destructor parasitic mite in honeybees using object detector techniques
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070960/
https://www.ncbi.nlm.nih.gov/pubmed/33919886
http://dx.doi.org/10.3390/s21082764
work_keys_str_mv AT biliksimon visualdiagnosisofthevarroadestructorparasiticmiteinhoneybeesusingobjectdetectortechniques
AT kratochvilalukas visualdiagnosisofthevarroadestructorparasiticmiteinhoneybeesusingobjectdetectortechniques
AT ligockiadam visualdiagnosisofthevarroadestructorparasiticmiteinhoneybeesusingobjectdetectortechniques
AT bostikondrej visualdiagnosisofthevarroadestructorparasiticmiteinhoneybeesusingobjectdetectortechniques
AT zemciktomas visualdiagnosisofthevarroadestructorparasiticmiteinhoneybeesusingobjectdetectortechniques
AT hyblmatous visualdiagnosisofthevarroadestructorparasiticmiteinhoneybeesusingobjectdetectortechniques
AT horakkarel visualdiagnosisofthevarroadestructorparasiticmiteinhoneybeesusingobjectdetectortechniques
AT zaludludek visualdiagnosisofthevarroadestructorparasiticmiteinhoneybeesusingobjectdetectortechniques