Cargando…
Off-Grid DOA Estimation Based on Circularly Fully Convolutional Networks (CFCN) Using Space-Frequency Pseudo-Spectrum
Low-frequency multi-source direction-of-arrival (DOA) estimation has been challenging for micro-aperture arrays. Deep learning (DL)-based models have been introduced to this problem. Generally, existing DL-based methods formulate DOA estimation as a multi-label multi-classification problem. However,...
Autores principales: | Zhang, Wenqiong, Huang, Yiwei, Tong, Jianfei, Bao, Ming, Li, Xiaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070975/ https://www.ncbi.nlm.nih.gov/pubmed/33919903 http://dx.doi.org/10.3390/s21082767 |
Ejemplares similares
-
Non-Circular Signal DOA Estimation with Nested Array via Off-Grid Sparse Bayesian Learning
por: Dong, Xudong, et al.
Publicado: (2023) -
Reweighted Off-Grid Sparse Spectrum Fitting for DOA Estimation in Sensor Array with Unknown Mutual Coupling
por: Li, Liangliang, et al.
Publicado: (2023) -
A Sparse-Based Off-Grid DOA Estimation Method for Coprime Arrays
por: Si, Weijian, et al.
Publicado: (2018) -
Off-Grid DOA Estimation Using Alternating Block Coordinate Descent in Compressed Sensing
por: Si, Weijian, et al.
Publicado: (2015) -
A Modified Rife Algorithm for Off-Grid DOA Estimation Based on Sparse Representations
por: Chen, Tao, et al.
Publicado: (2015)