Cargando…
Ligand-Receptor Interactions and Machine Learning in GCGR and GLP-1R Drug Discovery
The large amount of data that has been collected so far for G protein-coupled receptors requires machine learning (ML) approaches to fully exploit its potential. Our previous ML model based on gradient boosting used for prediction of drug affinity and selectivity for a receptor subtype was compared...
Autores principales: | Mizera, Mikołaj, Latek, Dorota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071054/ https://www.ncbi.nlm.nih.gov/pubmed/33920024 http://dx.doi.org/10.3390/ijms22084060 |
Ejemplares similares
-
Structural analysis of the dual agonism at GLP-1R and GCGR
por: Li, Yang, et al.
Publicado: (2023) -
Virtual Screening of C. Sativa Constituents for the Identification of Selective Ligands for Cannabinoid Receptor 2
por: Mizera, Mikołaj, et al.
Publicado: (2020) -
Selective polypeptide ligand binding to the extracellular surface of the transmembrane domains of the class B GPCRs GLP-1R and GCGR
por: Wang, Huixia, et al.
Publicado: (2023) -
BI 456906: Discovery and preclinical pharmacology of a novel GCGR/GLP-1R dual agonist with robust anti-obesity efficacy
por: Zimmermann, Tina, et al.
Publicado: (2022) -
Design of a highly potent GLP-1R and GCGR dual-agonist for recovering hepatic fibrosis
por: Song, Nazi, et al.
Publicado: (2022)