Cargando…
Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature
Supervised learning algorithms are a recent trend for the prediction of mechanical properties of concrete. This paper presents AdaBoost, random forest (RF), and decision tree (DT) models for predicting the compressive strength of concrete at high temperature, based on the experimental data of 207 te...
Autores principales: | Ahmad, Mahmood, Hu, Ji-Lei, Ahmad, Feezan, Tang, Xiao-Wei, Amjad, Maaz, Iqbal, Muhammad Junaid, Asim, Muhammad, Farooq, Asim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071252/ https://www.ncbi.nlm.nih.gov/pubmed/33920988 http://dx.doi.org/10.3390/ma14081983 |
Ejemplares similares
-
Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques
por: Li, Yongjian, et al.
Publicado: (2022) -
Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches
por: Ullah, Haji Sami, et al.
Publicado: (2022) -
Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Application of Soft-Computing Methods to Evaluate the Compressive Strength of Self-Compacting Concrete
por: Amin, Muhammad Nasir, et al.
Publicado: (2022)