Cargando…
Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors
The number of elderly people has increased as life expectancy increases. As muscle strength decreases with aging, it is easy to feel tired while walking, which is an activity of daily living (ADL), or suffer a fall accident. To compensate the walking problems, the terrain environment must be conside...
Autores principales: | Shin, Dongbin, Lee, Seungchan, Hwang, Seunghoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071300/ https://www.ncbi.nlm.nih.gov/pubmed/33920969 http://dx.doi.org/10.3390/s21082785 |
Ejemplares similares
-
Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables
por: Sherratt, Freddie, et al.
Publicado: (2021) -
Template-Based Recognition of Human Locomotion in IMU Sensor Data Using Dynamic Time Warping
por: Sczuka, Kim S., et al.
Publicado: (2021) -
A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors
por: Huang, Haohua, et al.
Publicado: (2021) -
Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU
por: Han, Yang, et al.
Publicado: (2021) -
IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks
por: Marcos Mazon, Daniel, et al.
Publicado: (2022)