Cargando…

Neurexin1α differentially regulates synaptic efficacy within striatal circuits

Mutations in genes essential for synaptic function, such as the presynaptic adhesion molecule Neurexin1α (Nrxn1α), are strongly implicated in neuropsychiatric pathophysiology. As the input nucleus of the basal ganglia, the striatum integrates diverse excitatory projections governing cognitive and mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Davatolhagh, M. Felicia, Fuccillo, Marc V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071350/
https://www.ncbi.nlm.nih.gov/pubmed/33626349
http://dx.doi.org/10.1016/j.celrep.2021.108773
Descripción
Sumario:Mutations in genes essential for synaptic function, such as the presynaptic adhesion molecule Neurexin1α (Nrxn1α), are strongly implicated in neuropsychiatric pathophysiology. As the input nucleus of the basal ganglia, the striatum integrates diverse excitatory projections governing cognitive and motor control, and its impairment may represent a recurrent pathway to disease. Here, we test the functional relevance of Nrxn1α in striatal circuits by employing optogenetic-mediated afferent recruitment of dorsal prefrontal cortical (dPFC) and parafascicular thalamic connections onto dorsomedial striatal (DMS) spiny projection neurons (SPNs). For dPFC-DMS circuits, we find decreased synaptic strength specifically onto indirect pathway SPNs in both Nrxn1α(+/−) and Nrxn1α(−/−) mice, driven by reductions in neurotransmitter release. In contrast, thalamic excitatory inputs to DMS exhibit relatively normal excitatory synaptic strength despite changes in synaptic N-methyl-D-aspartate receptor (NMDAR) content. These findings suggest that dysregulation of Nrxn1α modulates striatal function in an input- and target-specific manner.