Cargando…
Decursinol Angelate Arrest Melanoma Cell Proliferation by Initiating Cell Death and Tumor Shrinkage via Induction of Apoptosis
Melanoma is known to aggressively metastasize and is one of the prominent causes of skin cancer mortality. This study was designed to assess the molecular mechanism of decursinol angelate (DA) against murine melanoma cell line (B16F10 cells). Treatment of DA resulted in growth inhibition and cell cy...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071397/ https://www.ncbi.nlm.nih.gov/pubmed/33921050 http://dx.doi.org/10.3390/ijms22084096 |
_version_ | 1783683690406084608 |
---|---|
author | Chang, Sukkum Ngullie Khan, Imran Kim, Chang Geon Park, Seon Min Choi, Dong Kyu Lee, Heejin Hwang, Buyng Su Kang, Sun Chul Park, Jae Gyu |
author_facet | Chang, Sukkum Ngullie Khan, Imran Kim, Chang Geon Park, Seon Min Choi, Dong Kyu Lee, Heejin Hwang, Buyng Su Kang, Sun Chul Park, Jae Gyu |
author_sort | Chang, Sukkum Ngullie |
collection | PubMed |
description | Melanoma is known to aggressively metastasize and is one of the prominent causes of skin cancer mortality. This study was designed to assess the molecular mechanism of decursinol angelate (DA) against murine melanoma cell line (B16F10 cells). Treatment of DA resulted in growth inhibition and cell cycle arrest at G0/G1 (p < 0.001) phase, evaluated through immunoblotting. Moreover, autophagy-related proteins such as ATG-5 (p < 0.0001), ATG-7 (p < 0.0001), beclin-1 (p < 0.0001) and transition of LC3-I to LC3-II (p < 0.0001) were markedly decreased, indicating autophagosome inhibition. Additionally, DA treatment triggered apoptotic events which were corroborated by the occurrence of distorted nuclei, elevated reactive oxygen species (ROS) levels and reduction in the mitochondrial membrane potential. Subsequently, there was an increase in the expression of pro-apoptotic protein Bax in a dose-dependent manner, with the corresponding downregulation of Bcl-2 expression and cytochrome C expression following 24 h DA treatment in A375.SM and B16F10 cells. We substantiated our results for apoptotic occurrence through flow cytometry in B16F10 cells. Furthermore, we treated B16F10 cells with N-acetyl-L-cysteine (NAC). NAC treatment upregulated ATG-5 (p < 0.0001), beclin-1 (p < 0.0001) and LC3-I to LC3-II (p < 0.0001) conversion, which was inhibited in the DA treatment group. We also noticed a systematic upregulation of important markers for progression of G1 cell phase such as CDK-2 (p < 0.029), CDK-4 (p < 0.036), cyclin D1 (p < 0.0003) and cyclin E (p < 0.020) upon NAC treatment. In addition, we also observed a significant fold reduction (p < 0.05) in ROS fluorescent intensity and the expression of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase-9 (p > 0.010) and cleaved caspase-3 (p < 0.0001). NAC treatment was able to ameliorate DA-induced apoptosis and cell cycle arrest to support our finding. Our in vivo xenograft model also revealed similar findings, such as downregulation of CDK-2 (p < 0.0001) and CDK-4 (p < 0.0142) and upregulation of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase 3 (p < 0.0001) and cleaved caspase 9 (p < 0.0001). In summary, our study revealed that DA is an effective treatment against B16F10 melanoma cells and xenograft mice model. |
format | Online Article Text |
id | pubmed-8071397 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80713972021-04-26 Decursinol Angelate Arrest Melanoma Cell Proliferation by Initiating Cell Death and Tumor Shrinkage via Induction of Apoptosis Chang, Sukkum Ngullie Khan, Imran Kim, Chang Geon Park, Seon Min Choi, Dong Kyu Lee, Heejin Hwang, Buyng Su Kang, Sun Chul Park, Jae Gyu Int J Mol Sci Article Melanoma is known to aggressively metastasize and is one of the prominent causes of skin cancer mortality. This study was designed to assess the molecular mechanism of decursinol angelate (DA) against murine melanoma cell line (B16F10 cells). Treatment of DA resulted in growth inhibition and cell cycle arrest at G0/G1 (p < 0.001) phase, evaluated through immunoblotting. Moreover, autophagy-related proteins such as ATG-5 (p < 0.0001), ATG-7 (p < 0.0001), beclin-1 (p < 0.0001) and transition of LC3-I to LC3-II (p < 0.0001) were markedly decreased, indicating autophagosome inhibition. Additionally, DA treatment triggered apoptotic events which were corroborated by the occurrence of distorted nuclei, elevated reactive oxygen species (ROS) levels and reduction in the mitochondrial membrane potential. Subsequently, there was an increase in the expression of pro-apoptotic protein Bax in a dose-dependent manner, with the corresponding downregulation of Bcl-2 expression and cytochrome C expression following 24 h DA treatment in A375.SM and B16F10 cells. We substantiated our results for apoptotic occurrence through flow cytometry in B16F10 cells. Furthermore, we treated B16F10 cells with N-acetyl-L-cysteine (NAC). NAC treatment upregulated ATG-5 (p < 0.0001), beclin-1 (p < 0.0001) and LC3-I to LC3-II (p < 0.0001) conversion, which was inhibited in the DA treatment group. We also noticed a systematic upregulation of important markers for progression of G1 cell phase such as CDK-2 (p < 0.029), CDK-4 (p < 0.036), cyclin D1 (p < 0.0003) and cyclin E (p < 0.020) upon NAC treatment. In addition, we also observed a significant fold reduction (p < 0.05) in ROS fluorescent intensity and the expression of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase-9 (p > 0.010) and cleaved caspase-3 (p < 0.0001). NAC treatment was able to ameliorate DA-induced apoptosis and cell cycle arrest to support our finding. Our in vivo xenograft model also revealed similar findings, such as downregulation of CDK-2 (p < 0.0001) and CDK-4 (p < 0.0142) and upregulation of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase 3 (p < 0.0001) and cleaved caspase 9 (p < 0.0001). In summary, our study revealed that DA is an effective treatment against B16F10 melanoma cells and xenograft mice model. MDPI 2021-04-15 /pmc/articles/PMC8071397/ /pubmed/33921050 http://dx.doi.org/10.3390/ijms22084096 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chang, Sukkum Ngullie Khan, Imran Kim, Chang Geon Park, Seon Min Choi, Dong Kyu Lee, Heejin Hwang, Buyng Su Kang, Sun Chul Park, Jae Gyu Decursinol Angelate Arrest Melanoma Cell Proliferation by Initiating Cell Death and Tumor Shrinkage via Induction of Apoptosis |
title | Decursinol Angelate Arrest Melanoma Cell Proliferation by Initiating Cell Death and Tumor Shrinkage via Induction of Apoptosis |
title_full | Decursinol Angelate Arrest Melanoma Cell Proliferation by Initiating Cell Death and Tumor Shrinkage via Induction of Apoptosis |
title_fullStr | Decursinol Angelate Arrest Melanoma Cell Proliferation by Initiating Cell Death and Tumor Shrinkage via Induction of Apoptosis |
title_full_unstemmed | Decursinol Angelate Arrest Melanoma Cell Proliferation by Initiating Cell Death and Tumor Shrinkage via Induction of Apoptosis |
title_short | Decursinol Angelate Arrest Melanoma Cell Proliferation by Initiating Cell Death and Tumor Shrinkage via Induction of Apoptosis |
title_sort | decursinol angelate arrest melanoma cell proliferation by initiating cell death and tumor shrinkage via induction of apoptosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071397/ https://www.ncbi.nlm.nih.gov/pubmed/33921050 http://dx.doi.org/10.3390/ijms22084096 |
work_keys_str_mv | AT changsukkumngullie decursinolangelatearrestmelanomacellproliferationbyinitiatingcelldeathandtumorshrinkageviainductionofapoptosis AT khanimran decursinolangelatearrestmelanomacellproliferationbyinitiatingcelldeathandtumorshrinkageviainductionofapoptosis AT kimchanggeon decursinolangelatearrestmelanomacellproliferationbyinitiatingcelldeathandtumorshrinkageviainductionofapoptosis AT parkseonmin decursinolangelatearrestmelanomacellproliferationbyinitiatingcelldeathandtumorshrinkageviainductionofapoptosis AT choidongkyu decursinolangelatearrestmelanomacellproliferationbyinitiatingcelldeathandtumorshrinkageviainductionofapoptosis AT leeheejin decursinolangelatearrestmelanomacellproliferationbyinitiatingcelldeathandtumorshrinkageviainductionofapoptosis AT hwangbuyngsu decursinolangelatearrestmelanomacellproliferationbyinitiatingcelldeathandtumorshrinkageviainductionofapoptosis AT kangsunchul decursinolangelatearrestmelanomacellproliferationbyinitiatingcelldeathandtumorshrinkageviainductionofapoptosis AT parkjaegyu decursinolangelatearrestmelanomacellproliferationbyinitiatingcelldeathandtumorshrinkageviainductionofapoptosis |