Cargando…
Machine Learning-Based Classification of Lignocellulosic Biomass from Pyrolysis-Molecular Beam Mass Spectrometry Data
High-throughput analysis of biomass is necessary to ensure consistent and uniform feedstocks for agricultural and bioenergy applications and is needed to inform genomics and systems biology models. Pyrolysis followed by mass spectrometry such as molecular beam mass spectrometry (py-MBMS) analyses ar...
Autores principales: | Nag, Ambarish, Gerritsen, Alida, Doeppke, Crissa, Harman-Ware, Anne E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071563/ https://www.ncbi.nlm.nih.gov/pubmed/33921121 http://dx.doi.org/10.3390/ijms22084107 |
Ejemplares similares
-
Comparison of methodologies used to determine aromatic lignin unit ratios in lignocellulosic biomass
por: Happs, Renee M., et al.
Publicado: (2021) -
Accurate determination of genotypic variance of cell wall characteristics of a Populus trichocarpa pedigree using high-throughput pyrolysis-molecular beam mass spectrometry
por: Harman-Ware, Anne E., et al.
Publicado: (2021) -
Genetic Modification of KNAT7 Transcription Factor Expression Enhances Saccharification and Reduces Recalcitrance of Woody Biomass in Poplars
por: Ahlawat, Yogesh Kumar, et al.
Publicado: (2021) -
Analysis of Interactions Occurring during the Pyrolysis of Lignocellulosic Biomass
por: Bielecki, Marcin, et al.
Publicado: (2023) -
Rapid screening of secondary aromatic metabolites in Populus trichocarpa leaves
por: Harman-Ware, Anne E., et al.
Publicado: (2023)