Cargando…

Predicting body compositions of live finishing pigs based on bioelectrical impedance analysis

The objective of this study was to predict body compositions of live pigs using bioelectrical impedance procedures. In experiment 1, 32 crossbred (Duroc × Landrace × Yorkshire) finishing pigs with an average weight at 84.06 kg were used. In experiment 2, 96 crossbred (Duroc × Landrace × Yorkshire) f...

Descripción completa

Detalles Bibliográficos
Autores principales: An, Ji Seon, Lee, Ji Hwan, Song, Min Ho, Yun, Won, Oh, Han Jin, Kim, Yong Ju, Lee, Jun Soeng, Kim, Hyeun Bum, Cho, Jin Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Animal Sciences and Technology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071748/
https://www.ncbi.nlm.nih.gov/pubmed/33987608
http://dx.doi.org/10.5187/jast.2021.e31
Descripción
Sumario:The objective of this study was to predict body compositions of live pigs using bioelectrical impedance procedures. In experiment 1, 32 crossbred (Duroc × Landrace × Yorkshire) finishing pigs with an average weight at 84.06 kg were used. In experiment 2, 96 crossbred (Duroc × Landrace × Yorkshire) finishing pigs with an average weight at 88.8 kg were used. A four-terminal body composition analyser was utilized to determine fat percentage. Lean meat percentage and backfat thickness were measured with a lean meat measuring meter. In experiment 1, fat percentage was not significantly correlated with lean meat percentage, although a tendency (p < 0.1) of a negative correlation was found. Backfat thickness was significantly correlated with fat percentage and lean meat percentage (r = 0.745 and r = −0.961, respectively). Coefficients of determination for fat percentage with lean meat percentage, fat percentage with backfat thickness, and backfat thickness with lean meat percentage were 0.503, 0.566, and 0.923, respectively. In experiment 2, fat percentage was significantly correlated with lean meat percentage (r = −0.972). Backfat thickness was also significantly correlated with fat percentage and lean meat percentage (r = 0.935 and r = −0.957, respectively). Results of this study indicate that bioelectrical impedance analysis might be useful for predicting body compositions of live finishing pigs.