Cargando…
Mammalian Germ Cell Development: From Mechanism to In Vitro Reconstitution
The germ cell lineage gives rise to totipotency and perpetuates and diversifies genetic as well as epigenetic information. Specifically, germ cells undergo epigenetic reprogramming/programming, replicate genetic information with high fidelity, and create genetic diversity through meiotic recombinati...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072030/ https://www.ncbi.nlm.nih.gov/pubmed/33577794 http://dx.doi.org/10.1016/j.stemcr.2021.01.008 |
Sumario: | The germ cell lineage gives rise to totipotency and perpetuates and diversifies genetic as well as epigenetic information. Specifically, germ cells undergo epigenetic reprogramming/programming, replicate genetic information with high fidelity, and create genetic diversity through meiotic recombination. Driven by advances in our understanding of the mechanisms underlying germ cell development and stem cell/reproductive technologies, research over the past 2 decades has culminated in the in vitro reconstitution of mammalian germ cell development: mouse pluripotent stem cells (PSCs) can now be induced into primordial germ cell-like cells (PGCLCs) and then differentiated into fully functional oocytes and spermatogonia, and human PSCs can be induced into PGCLCs and into early oocytes and prospermatogonia with epigenetic reprogramming. Here, I provide my perspective on the key investigations that have led to the in vitro reconstitution of mammalian germ cell development, which will be instrumental in exploring salient themes in germ cell biology and, with further refinements/extensions, in developing innovative medical applications. |
---|