Cargando…
Improving axial resolution in Structured Illumination Microscopy using deep learning
Structured Illumination Microscopy (SIM) is a widespread methodology to image live and fixed biological structures smaller than the diffraction limits of conventional optical microscopy. Using recent advances in image up-scaling through deep learning models, we demonstrate a method to reconstruct 3D...
Autores principales: | Boland, Miguel A., Cohen, Edward A. K., Flaxman, Seth R., Neil, Mark A. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072200/ https://www.ncbi.nlm.nih.gov/pubmed/33896203 http://dx.doi.org/10.1098/rsta.2020.0298 |
Ejemplares similares
-
Concepts for structured illumination microscopy with extended axial resolution through mirrored illumination
por: Manton, James D., et al.
Publicado: (2020) -
Three-dimensional structured illumination microscopy with enhanced axial resolution
por: Li, Xuesong, et al.
Publicado: (2023) -
Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination
por: Choi, Heejin, et al.
Publicado: (2013) -
Deep learning for blind structured illumination microscopy
por: Xypakis, Emmanouil, et al.
Publicado: (2022) -
Super-resolution imaging of neuronal structure with structured illumination microscopy
por: Paul, Tristan C., et al.
Publicado: (2023)