Cargando…
GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network
Identifying drug–target interaction (DTI) is the basis for drug development. However, the method of using biochemical experiments to discover drug-target interactions has low coverage and high costs. Many computational methods have been developed to predict potential drug-target interactions based o...
Autores principales: | Liu, Zhixian, Chen, Qingfeng, Lan, Wei, Pan, Haiming, Hao, Xinkun, Pan, Shirui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072283/ https://www.ncbi.nlm.nih.gov/pubmed/33912218 http://dx.doi.org/10.3389/fgene.2021.650821 |
Ejemplares similares
-
AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders
por: Sajadi, Seyedeh Zahra, et al.
Publicado: (2021) -
Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network
por: Li, Xinxing, et al.
Publicado: (2023) -
Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
por: Feng, Xiang, et al.
Publicado: (2022) -
Representation Learning: Recommendation With Knowledge Graph via Triple-Autoencoder
por: Geng, Yishuai, et al.
Publicado: (2022) -
Enhancing drug–drug interaction prediction by three-way decision and knowledge graph embedding
por: Hao, Xinkun, et al.
Publicado: (2022)