Cargando…
hsa-miR-5580-3p inhibits oral cancer cell viability, proliferation and migration by suppressing LAMC2
The present study aimed to explore whether and how microRNA-5580-3p (miR-5580-3p) affected oral cancer (OC) cell phenotypes via regulation of laminin subunit γ2 (LAMC2). Bioinformatics analysis was used to identify miR-5580-3p/LAMC2, a novel interactome that, to the best of our knowledge, has not be...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072311/ https://www.ncbi.nlm.nih.gov/pubmed/33880581 http://dx.doi.org/10.3892/mmr.2021.12092 |
Sumario: | The present study aimed to explore whether and how microRNA-5580-3p (miR-5580-3p) affected oral cancer (OC) cell phenotypes via regulation of laminin subunit γ2 (LAMC2). Bioinformatics analysis was used to identify miR-5580-3p/LAMC2, a novel interactome that, to the best of our knowledge, has not been studied previously in OC. In the present study, the expression levels of miR-5580-3p and LAMC2 were detected by reverse transcription-quantitative PCR, while the protein expression levels of LAMC2 were identified using western blotting. To determine the effects of miR-5580-3p and LAMC2 in OC, a number of experiments, including Cell Counting Kit-8, 5-bromo-2′-deoxyuridine cell proliferation and wound healing migration assays, were performed using OC SCC-4 and Cal-27 cell lines. Additionally, luciferase reporter assays were employed to examine the interaction between miR-5580-3p and LAMC2 mRNA. The results demonstrated that miR-5580-3p expression was downregulated, while LAMC2 expression was upregulated in OC tissues and cell lines. In addition to the observation that miR-5580-3p promoted the malignant phenotypes of OC, it was also revealed that miR-5580-3p inhibited OC cell viability, proliferation and migration by suppressing LAMC2. Therefore, the present study suggested that miR-5580-3p and LAMC2 may be potential biomarkers and therapeutic targets for OC diagnosis and therapies in the future. |
---|