Cargando…
UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover
SIMPLE SUMMARY: The cotton aphid, Aphis gossypii Glover, is a notorious pest in cotton and cucurbit fields. The control of A. gossypii has typically relied on the application of chemical insecticides. Sulfoxaflor is the first commercially available sulfoximine insecticide, which exhibits great effic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072560/ https://www.ncbi.nlm.nih.gov/pubmed/33923504 http://dx.doi.org/10.3390/insects12040356 |
_version_ | 1783683934996922368 |
---|---|
author | Ma, Kangsheng Tang, Qiuling Liang, Pingzhuo Li, Jianhong Gao, Xiwu |
author_facet | Ma, Kangsheng Tang, Qiuling Liang, Pingzhuo Li, Jianhong Gao, Xiwu |
author_sort | Ma, Kangsheng |
collection | PubMed |
description | SIMPLE SUMMARY: The cotton aphid, Aphis gossypii Glover, is a notorious pest in cotton and cucurbit fields. The control of A. gossypii has typically relied on the application of chemical insecticides. Sulfoxaflor is the first commercially available sulfoximine insecticide, which exhibits great efficacy against sap-feeding insect pests and has been applied as an alternative insecticide for controlling of A. gossypii in China. Consequently, A. gossypii quickly developed resistance to this insecticide. Hence, in this study, to clarify the potential detoxifying roles of UGTs (one of the phase II detoxification enzymes) in resistance of A. gossypii against sulfoxaflor, the synergistic effects of two synergists (sulfinpyrazone and 5-nitrouracil) against sulfoxaflor were investigated using the susceptible and laboratory-established sulfoxaflor resistant strain (SulR), and the expression levels of 15 UGT genes were determined by qRT-PCR. Furthermore, the involvement of highly upregulated UGTs in sulfoxaflor-resistant strain was functionally tested by RNA interference (RNAi). Our results suggest that overexpression of UGTs contributes to sulfoxaflor resistance in A. gossypii, which should be useful for understanding sulfoxaflor resistance mechanisms. ABSTRACT: UDP-glycosyltransferases (UGTs) are major phase II detoxification enzymes that catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules and play very important roles in the biotransformation of various endogenous and exogenous compounds. Our previous studies demonstrated that UGTs participated in the detoxification of insecticides in Aphis gossypii. However, the potential roles of UGTs in A. gossypii resistance to sulfoxaflor are still unclear. In this study, two inhibitors of UGT enzymes, sulfinpyrazone and 5-nitrouracil, significantly increased the toxicity of sulfoxaflor to a resistant strain of A. gossypii, whereas there were no synergistic effects in the susceptible strain. Based on the transcriptome sequencing results, the expression levels of 15 UGTs were analyzed by quantitative real-time PCR, and we found that seven UGT genes were highly over-expressed in a sulfoxaflor-resistant strain compared to the susceptible strain, including UGT344B4, UGT344C5, UGT344A11, UGT344A14, and UGT344L2. Further suppressing the expression of UGT344B4, UGT344C5, and UGT344A11 by RNA interference significantly increased the sensitivity of resistant aphids to sulfoxaflor, indicating that the overexpression of UGT genes is potentially associated with sulfoxaflor resistance. These results could provide valuable information for further understanding the mechanisms of insecticide resistance. |
format | Online Article Text |
id | pubmed-8072560 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80725602021-04-27 UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover Ma, Kangsheng Tang, Qiuling Liang, Pingzhuo Li, Jianhong Gao, Xiwu Insects Article SIMPLE SUMMARY: The cotton aphid, Aphis gossypii Glover, is a notorious pest in cotton and cucurbit fields. The control of A. gossypii has typically relied on the application of chemical insecticides. Sulfoxaflor is the first commercially available sulfoximine insecticide, which exhibits great efficacy against sap-feeding insect pests and has been applied as an alternative insecticide for controlling of A. gossypii in China. Consequently, A. gossypii quickly developed resistance to this insecticide. Hence, in this study, to clarify the potential detoxifying roles of UGTs (one of the phase II detoxification enzymes) in resistance of A. gossypii against sulfoxaflor, the synergistic effects of two synergists (sulfinpyrazone and 5-nitrouracil) against sulfoxaflor were investigated using the susceptible and laboratory-established sulfoxaflor resistant strain (SulR), and the expression levels of 15 UGT genes were determined by qRT-PCR. Furthermore, the involvement of highly upregulated UGTs in sulfoxaflor-resistant strain was functionally tested by RNA interference (RNAi). Our results suggest that overexpression of UGTs contributes to sulfoxaflor resistance in A. gossypii, which should be useful for understanding sulfoxaflor resistance mechanisms. ABSTRACT: UDP-glycosyltransferases (UGTs) are major phase II detoxification enzymes that catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules and play very important roles in the biotransformation of various endogenous and exogenous compounds. Our previous studies demonstrated that UGTs participated in the detoxification of insecticides in Aphis gossypii. However, the potential roles of UGTs in A. gossypii resistance to sulfoxaflor are still unclear. In this study, two inhibitors of UGT enzymes, sulfinpyrazone and 5-nitrouracil, significantly increased the toxicity of sulfoxaflor to a resistant strain of A. gossypii, whereas there were no synergistic effects in the susceptible strain. Based on the transcriptome sequencing results, the expression levels of 15 UGTs were analyzed by quantitative real-time PCR, and we found that seven UGT genes were highly over-expressed in a sulfoxaflor-resistant strain compared to the susceptible strain, including UGT344B4, UGT344C5, UGT344A11, UGT344A14, and UGT344L2. Further suppressing the expression of UGT344B4, UGT344C5, and UGT344A11 by RNA interference significantly increased the sensitivity of resistant aphids to sulfoxaflor, indicating that the overexpression of UGT genes is potentially associated with sulfoxaflor resistance. These results could provide valuable information for further understanding the mechanisms of insecticide resistance. MDPI 2021-04-16 /pmc/articles/PMC8072560/ /pubmed/33923504 http://dx.doi.org/10.3390/insects12040356 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Ma, Kangsheng Tang, Qiuling Liang, Pingzhuo Li, Jianhong Gao, Xiwu UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover |
title | UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover |
title_full | UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover |
title_fullStr | UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover |
title_full_unstemmed | UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover |
title_short | UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover |
title_sort | udp-glycosyltransferases from the ugt344 family are involved in sulfoxaflor resistance in aphis gossypii glover |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072560/ https://www.ncbi.nlm.nih.gov/pubmed/33923504 http://dx.doi.org/10.3390/insects12040356 |
work_keys_str_mv | AT makangsheng udpglycosyltransferasesfromtheugt344familyareinvolvedinsulfoxaflorresistanceinaphisgossypiiglover AT tangqiuling udpglycosyltransferasesfromtheugt344familyareinvolvedinsulfoxaflorresistanceinaphisgossypiiglover AT liangpingzhuo udpglycosyltransferasesfromtheugt344familyareinvolvedinsulfoxaflorresistanceinaphisgossypiiglover AT lijianhong udpglycosyltransferasesfromtheugt344familyareinvolvedinsulfoxaflorresistanceinaphisgossypiiglover AT gaoxiwu udpglycosyltransferasesfromtheugt344familyareinvolvedinsulfoxaflorresistanceinaphisgossypiiglover |