Cargando…
A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors
The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge maintenance programs, visual inspection predominates nowadays as the primary source of information. Yet, visual inspections alone are insufficient...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072662/ https://www.ncbi.nlm.nih.gov/pubmed/33921865 http://dx.doi.org/10.3390/s21082871 |
_version_ | 1783683958689497088 |
---|---|
author | Sakiyama, Felipe Isamu H. Lehmann, Frank Garrecht, Harald |
author_facet | Sakiyama, Felipe Isamu H. Lehmann, Frank Garrecht, Harald |
author_sort | Sakiyama, Felipe Isamu H. |
collection | PubMed |
description | The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge maintenance programs, visual inspection predominates nowadays as the primary source of information. Yet, visual inspections alone are insufficient to satisfy the current needs for safety assessment. From this perspective, extensive research on structural health monitoring has been developed in recent decades. However, the transfer rate from laboratory experiments to real-case applications is still unsatisfactory. This paper addresses the main limitations that slow the deployment and the acceptance of real-size structural health monitoring systems (SHM) and presents a novel real-time analysis algorithm based on random variable correlation for condition monitoring. The proposed algorithm was designed to respond automatically to detect unexpected events, such as local structural failure, within a multitude of random dynamic loads. The results are part of a project on SHM, where a high sensor-count monitoring system based on long-gauge fiber Bragg grating sensors (LGFBG) was installed on a prestressed concrete bridge in Neckarsulm, Germany. The authors also present the data management system developed to handle a large amount of data, and demonstrate the results from one of the implemented post-processing methods, the principal component analysis (PCA). The results showed that the deployed SHM system successfully translates the massive raw data into meaningful information. The proposed real-time analysis algorithm delivers a reliable notification system that allows bridge managers to track unexpected events as a basis for decision-making. |
format | Online Article Text |
id | pubmed-8072662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80726622021-04-27 A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors Sakiyama, Felipe Isamu H. Lehmann, Frank Garrecht, Harald Sensors (Basel) Article The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge maintenance programs, visual inspection predominates nowadays as the primary source of information. Yet, visual inspections alone are insufficient to satisfy the current needs for safety assessment. From this perspective, extensive research on structural health monitoring has been developed in recent decades. However, the transfer rate from laboratory experiments to real-case applications is still unsatisfactory. This paper addresses the main limitations that slow the deployment and the acceptance of real-size structural health monitoring systems (SHM) and presents a novel real-time analysis algorithm based on random variable correlation for condition monitoring. The proposed algorithm was designed to respond automatically to detect unexpected events, such as local structural failure, within a multitude of random dynamic loads. The results are part of a project on SHM, where a high sensor-count monitoring system based on long-gauge fiber Bragg grating sensors (LGFBG) was installed on a prestressed concrete bridge in Neckarsulm, Germany. The authors also present the data management system developed to handle a large amount of data, and demonstrate the results from one of the implemented post-processing methods, the principal component analysis (PCA). The results showed that the deployed SHM system successfully translates the massive raw data into meaningful information. The proposed real-time analysis algorithm delivers a reliable notification system that allows bridge managers to track unexpected events as a basis for decision-making. MDPI 2021-04-19 /pmc/articles/PMC8072662/ /pubmed/33921865 http://dx.doi.org/10.3390/s21082871 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Sakiyama, Felipe Isamu H. Lehmann, Frank Garrecht, Harald A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors |
title | A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors |
title_full | A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors |
title_fullStr | A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors |
title_full_unstemmed | A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors |
title_short | A Novel Runtime Algorithm for the Real-Time Analysis and Detection of Unexpected Changes in a Real-Size SHM Network with Quasi-Distributed FBG Sensors |
title_sort | novel runtime algorithm for the real-time analysis and detection of unexpected changes in a real-size shm network with quasi-distributed fbg sensors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072662/ https://www.ncbi.nlm.nih.gov/pubmed/33921865 http://dx.doi.org/10.3390/s21082871 |
work_keys_str_mv | AT sakiyamafelipeisamuh anovelruntimealgorithmfortherealtimeanalysisanddetectionofunexpectedchangesinarealsizeshmnetworkwithquasidistributedfbgsensors AT lehmannfrank anovelruntimealgorithmfortherealtimeanalysisanddetectionofunexpectedchangesinarealsizeshmnetworkwithquasidistributedfbgsensors AT garrechtharald anovelruntimealgorithmfortherealtimeanalysisanddetectionofunexpectedchangesinarealsizeshmnetworkwithquasidistributedfbgsensors AT sakiyamafelipeisamuh novelruntimealgorithmfortherealtimeanalysisanddetectionofunexpectedchangesinarealsizeshmnetworkwithquasidistributedfbgsensors AT lehmannfrank novelruntimealgorithmfortherealtimeanalysisanddetectionofunexpectedchangesinarealsizeshmnetworkwithquasidistributedfbgsensors AT garrechtharald novelruntimealgorithmfortherealtimeanalysisanddetectionofunexpectedchangesinarealsizeshmnetworkwithquasidistributedfbgsensors |