Cargando…

A Hybrid Visual Tracking Algorithm Based on SOM Network and Correlation Filter

To meet the challenge of video target tracking, based on a self-organization mapping network (SOM) and correlation filter, a long-term visual tracking algorithm is proposed. Objects in different videos or images often have completely different appearance, therefore, the self-organization mapping neu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuanping, Huang, Xiumei, Yang, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072667/
https://www.ncbi.nlm.nih.gov/pubmed/33921720
http://dx.doi.org/10.3390/s21082864
Descripción
Sumario:To meet the challenge of video target tracking, based on a self-organization mapping network (SOM) and correlation filter, a long-term visual tracking algorithm is proposed. Objects in different videos or images often have completely different appearance, therefore, the self-organization mapping neural network with the characteristics of signal processing mechanism of human brain neurons is used to perform adaptive and unsupervised features learning. A reliable method of robust target tracking is proposed, based on multiple adaptive correlation filters with a memory function of target appearance at the same time. Filters in our method have different updating strategies and can carry out long-term tracking cooperatively. The first is the displacement filter, a kernelized correlation filter that combines contextual characteristics to precisely locate and track targets. Secondly, the scale filters are used to predict the changing scale of a target. Finally, the memory filter is used to maintain the appearance of the target in long-term memory and judge whether the target has failed to track. If the tracking fails, the incremental learning detector is used to recover the target tracking in the way of sliding window. Several experiments show that our method can effectively solve the tracking problems such as severe occlusion, target loss and scale change, and is superior to the state-of-the-art methods in the aspects of efficiency, accuracy and robustness.