Cargando…
An Investigation of the High-Frequency Ultrasonic Vibration-Assisted Cutting of Steel Optical Moulds
Ultrasonic vibration-assisted cutting (UVAC) has been regarded as a promising technology to machine difficult-to-machine materials such as tungsten carbide, optical glass, and hardened steel in order to achieve superfinished surfaces. To increase vibration stability to achieve optical surface qualit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072909/ https://www.ncbi.nlm.nih.gov/pubmed/33921717 http://dx.doi.org/10.3390/mi12040460 |
_version_ | 1783684013804748800 |
---|---|
author | Zhang, Canbin Cheung, Chifai Bulla, Benjamin Zhao, Chenyang |
author_facet | Zhang, Canbin Cheung, Chifai Bulla, Benjamin Zhao, Chenyang |
author_sort | Zhang, Canbin |
collection | PubMed |
description | Ultrasonic vibration-assisted cutting (UVAC) has been regarded as a promising technology to machine difficult-to-machine materials such as tungsten carbide, optical glass, and hardened steel in order to achieve superfinished surfaces. To increase vibration stability to achieve optical surface quality of a workpiece, a high-frequency ultrasonic vibration-assisted cutting system with a vibration frequency of about 104 kHz is used to machine spherical optical steel moulds. A series of experiments are conducted to investigate the effect of machining parameters on the surface roughness of the workpiece including nominal cutting speed, feed rate, tool nose radius, vibration amplitude, and cutting geometry. This research takes into account the effects of the constantly changing contact point on the tool edge with the workpiece induced by the cutting geometry when machining a spherical steel mould. The surface morphology and surface roughness at different regions on the machined mould, with slope degrees (SDs) of 0°, 5°, 10°, and 15°, were measured and analysed. The experimental results show that the arithmetic roughness [Formula: see text] of the workpiece increases gradually with increasing slope degree. By using optimised cutting parameters, a constant surface roughness [Formula: see text] of 3 nm to 4 nm at different slope degrees was achieved by the applied high-frequency UVAC technique. This study provides guidance for ultra-precision machining of steel moulds with great variation in slope degree in the pursuit of optical quality on the whole surface. |
format | Online Article Text |
id | pubmed-8072909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80729092021-04-27 An Investigation of the High-Frequency Ultrasonic Vibration-Assisted Cutting of Steel Optical Moulds Zhang, Canbin Cheung, Chifai Bulla, Benjamin Zhao, Chenyang Micromachines (Basel) Article Ultrasonic vibration-assisted cutting (UVAC) has been regarded as a promising technology to machine difficult-to-machine materials such as tungsten carbide, optical glass, and hardened steel in order to achieve superfinished surfaces. To increase vibration stability to achieve optical surface quality of a workpiece, a high-frequency ultrasonic vibration-assisted cutting system with a vibration frequency of about 104 kHz is used to machine spherical optical steel moulds. A series of experiments are conducted to investigate the effect of machining parameters on the surface roughness of the workpiece including nominal cutting speed, feed rate, tool nose radius, vibration amplitude, and cutting geometry. This research takes into account the effects of the constantly changing contact point on the tool edge with the workpiece induced by the cutting geometry when machining a spherical steel mould. The surface morphology and surface roughness at different regions on the machined mould, with slope degrees (SDs) of 0°, 5°, 10°, and 15°, were measured and analysed. The experimental results show that the arithmetic roughness [Formula: see text] of the workpiece increases gradually with increasing slope degree. By using optimised cutting parameters, a constant surface roughness [Formula: see text] of 3 nm to 4 nm at different slope degrees was achieved by the applied high-frequency UVAC technique. This study provides guidance for ultra-precision machining of steel moulds with great variation in slope degree in the pursuit of optical quality on the whole surface. MDPI 2021-04-19 /pmc/articles/PMC8072909/ /pubmed/33921717 http://dx.doi.org/10.3390/mi12040460 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Canbin Cheung, Chifai Bulla, Benjamin Zhao, Chenyang An Investigation of the High-Frequency Ultrasonic Vibration-Assisted Cutting of Steel Optical Moulds |
title | An Investigation of the High-Frequency Ultrasonic Vibration-Assisted Cutting of Steel Optical Moulds |
title_full | An Investigation of the High-Frequency Ultrasonic Vibration-Assisted Cutting of Steel Optical Moulds |
title_fullStr | An Investigation of the High-Frequency Ultrasonic Vibration-Assisted Cutting of Steel Optical Moulds |
title_full_unstemmed | An Investigation of the High-Frequency Ultrasonic Vibration-Assisted Cutting of Steel Optical Moulds |
title_short | An Investigation of the High-Frequency Ultrasonic Vibration-Assisted Cutting of Steel Optical Moulds |
title_sort | investigation of the high-frequency ultrasonic vibration-assisted cutting of steel optical moulds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072909/ https://www.ncbi.nlm.nih.gov/pubmed/33921717 http://dx.doi.org/10.3390/mi12040460 |
work_keys_str_mv | AT zhangcanbin aninvestigationofthehighfrequencyultrasonicvibrationassistedcuttingofsteelopticalmoulds AT cheungchifai aninvestigationofthehighfrequencyultrasonicvibrationassistedcuttingofsteelopticalmoulds AT bullabenjamin aninvestigationofthehighfrequencyultrasonicvibrationassistedcuttingofsteelopticalmoulds AT zhaochenyang aninvestigationofthehighfrequencyultrasonicvibrationassistedcuttingofsteelopticalmoulds AT zhangcanbin investigationofthehighfrequencyultrasonicvibrationassistedcuttingofsteelopticalmoulds AT cheungchifai investigationofthehighfrequencyultrasonicvibrationassistedcuttingofsteelopticalmoulds AT bullabenjamin investigationofthehighfrequencyultrasonicvibrationassistedcuttingofsteelopticalmoulds AT zhaochenyang investigationofthehighfrequencyultrasonicvibrationassistedcuttingofsteelopticalmoulds |