Cargando…
Regression with Highly Correlated Predictors: Variable Omission Is Not the Solution
Regression models have been in use for decades to explore and quantify the association between a dependent response and several independent variables in environmental sciences, epidemiology and public health. However, researchers often encounter situations in which some independent variables exhibit...
Autores principales: | Gregorich, Mariella, Strohmaier, Susanne, Dunkler, Daniela, Heinze, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073086/ https://www.ncbi.nlm.nih.gov/pubmed/33920501 http://dx.doi.org/10.3390/ijerph18084259 |
Ejemplares similares
-
Variable selection – A review and recommendations for the practicing statistician
por: Heinze, Georg, et al.
Publicado: (2018) -
Comparative effectiveness of branded vs. generic versions of antihypertensive, lipid-lowering and hypoglycemic substances: a population-wide cohort study
por: Tian, Yuxi, et al.
Publicado: (2020) -
Selection of variables for multivariable models: Opportunities and limitations in quantifying model stability by resampling
por: Wallisch, Christine, et al.
Publicado: (2020) -
The roles of predictors in cardiovascular risk models - a question of modeling culture?
por: Wallisch, Christine, et al.
Publicado: (2021) -
Correlates of Insulin Injection Omission
por: Peyrot, Mark, et al.
Publicado: (2010)