Cargando…
Movement Path Data Generation from Wi-Fi Fingerprints for Recurrent Neural Networks
The recurrent neural network (RNN) model, which is a deep-learning network that can memorize past information, is used in this paper to memorize continuous movements in indoor positioning to reduce positioning error. To use an RNN model in Wi-Fi-fingerprint based indoor positioning, data set must be...
Autores principales: | Shin, Hong-Gi, Choi, Yong-Hoon, Yoon, Chang-Pyo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073539/ https://www.ncbi.nlm.nih.gov/pubmed/33923847 http://dx.doi.org/10.3390/s21082823 |
Ejemplares similares
-
Neural-Network-Based Localization Method for Wi-Fi Fingerprint Indoor Localization
por: Zhu, Hui, et al.
Publicado: (2023) -
A Generative Method for Indoor Localization Using Wi-Fi Fingerprinting
por: Belmonte-Fernández, Óscar, et al.
Publicado: (2021) -
An Improved Algorithm to Generate a Wi-Fi Fingerprint Database for Indoor Positioning
por: Chen, Lina, et al.
Publicado: (2013) -
Wi-Fi Handshake: analysis of password patterns in Wi-Fi networks
por: Carballal, Adrian, et al.
Publicado: (2022) -
On-Device Learning of Indoor Location for WiFi Fingerprint Approach
por: Nuño-Maganda, Marco Aurelio, et al.
Publicado: (2018)