Cargando…
Development of a New Deodorization Method of Herring Milt Hydrolysate: Impacts of pH, Stirring with Nitrogen and Deaerator Treatment on the Odorous Content
Herring milt hydrolysate (HMH) presents the disadvantage of being associated with an unpleasant smell limiting its use. Thus, to develop a new effective and easy-to-use deodorization method, this research aimed to deepen the knowledge regarding the impacts of pH (pH 7 vs. pH 10), overnight stirring...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073558/ https://www.ncbi.nlm.nih.gov/pubmed/33920688 http://dx.doi.org/10.3390/foods10040884 |
Sumario: | Herring milt hydrolysate (HMH) presents the disadvantage of being associated with an unpleasant smell limiting its use. Thus, to develop a new effective and easy-to-use deodorization method, this research aimed to deepen the knowledge regarding the impacts of pH (pH 7 vs. pH 10), overnight stirring with nitrogen (+N vs. −N) and deaerator treatment (+D vs. −D) on the odorous content of HMH. This latter included dimethylamine (DMA), trimethylamine (TMA), trimethylamine oxide (TMAO) and the most potent odor-active compounds of HMH. Results showed that pH had a huge impact on the targeted compounds resulting in higher detected concentrations of DMA, TMA and TMAO at pH 10 than at pH 7 (p < 0.05) while the opposite trend was observed for the most potent odor-active compounds of HMH (p < 0.05). Moreover, independently of the pH condition, the overnight stirring with or without nitrogen had no impact (p > 0.05). Finally, the deaerator treatment was more effective to remove TMA and DMA at pH 10 than at pH 7 (p < 0.05) while the opposite trend was observed for the most potent odor-active compounds (p < 0.05). Sensory analysis confirmed that the application of pH 10 −N +D and pH 7 −N +D + alkalization pH 10 conditions led to the least odorous products (p < 0.05). |
---|