Cargando…
Improved Bone Quality and Bone Healing of Dystrophic Mice by Parabiosis
Duchenne muscular dystrophy (DMD) is a degenerative muscle disorder characterized by a lack of dystrophin expression in the sarcolemma of muscle fibers. DMD patients acquire bone abnormalities including osteopenia, fragility fractures, and scoliosis indicating a deficiency in skeletal homeostasis. T...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073674/ https://www.ncbi.nlm.nih.gov/pubmed/33923553 http://dx.doi.org/10.3390/metabo11040247 |
Sumario: | Duchenne muscular dystrophy (DMD) is a degenerative muscle disorder characterized by a lack of dystrophin expression in the sarcolemma of muscle fibers. DMD patients acquire bone abnormalities including osteopenia, fragility fractures, and scoliosis indicating a deficiency in skeletal homeostasis. The dKO (dystrophin/Utrophin double knockout) is a more severe mouse model of DMD than the mdx mouse (dystrophin deficient), and display numerous clinically-relevant manifestations, including a spectrum of degenerative changes outside skeletal muscle including bone, articular cartilage, and intervertebral discs. To examine the influence of systemic factors on the bone abnormalities and healing in DMD, parabiotic pairing between dKO mice and mdx mice was established. Notably, heterochronic parabiosis with young mdx mice significantly increased bone mass and improved bone micro-structure in old dKO-hetero mice, which showed progressive bone deterioration. Furthermore, heterochronic parabiosis with WT C56/10J mice significantly improved tibia bone defect healing in dKO-homo mice. These results suggest that systemic blood-borne factor(s) and/or progenitors from WT and young mdx mice can influence the bone deficiencies in dKO mice. Understanding these circulating factors or progenitor cells that are responsible to alleviate the bone abnormalities in dKO mice after heterochronic parabiosis might be useful for the management of poor bone health in DMD. |
---|