Cargando…
New Sensor Data Structuring for Deeper Feature Extraction in Human Activity Recognition †
For the effective application of thriving human-assistive technologies in healthcare services and human–robot collaborative tasks, computing devices must be aware of human movements. Developing a reliable real-time activity recognition method for the continuous and smooth operation of such smart dev...
Autores principales: | Alemayoh, Tsige Tadesse, Lee, Jae Hoon, Okamoto, Shingo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073736/ https://www.ncbi.nlm.nih.gov/pubmed/33923706 http://dx.doi.org/10.3390/s21082814 |
Ejemplares similares
-
Deep-Learning-Based Character Recognition from Handwriting Motion Data Captured Using IMU and Force Sensors
por: Alemayoh, Tsige Tadesse, et al.
Publicado: (2022) -
The Deeper the Love, the Deeper the Hate
por: Jin, Wang, et al.
Publicado: (2017) -
The Deeper Reason
Publicado: (1914) -
EEG Feature Extraction and Data Augmentation in Emotion Recognition
por: Kalashami, Mahsa Pourhosein, et al.
Publicado: (2022) -
A Unified Local–Global Feature Extraction Network for Human Gait Recognition Using Smartphone Sensors
por: Das, Sonia, et al.
Publicado: (2022)