Cargando…
Cognitive Function and Whole-Brain MRI Metrics Are Not Associated with Mobility in Older Adults with Multiple Sclerosis
Due to advances in disease-modifying medications and earlier management of comorbidities, adults with multiple sclerosis (MS) are living longer, and this coincides with the aging of the general population. One major problem among older adults with and without MS is limited mobility, a consequence of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073870/ https://www.ncbi.nlm.nih.gov/pubmed/33923592 http://dx.doi.org/10.3390/ijerph18084232 |
Sumario: | Due to advances in disease-modifying medications and earlier management of comorbidities, adults with multiple sclerosis (MS) are living longer, and this coincides with the aging of the general population. One major problem among older adults with and without MS is limited mobility, a consequence of aging that often negatively affects quality of life. Identifying factors that contribute to mobility disability is needed to develop targeted rehabilitation approaches. This study examined cognitive processing speed and global brain atrophy as factors that may contribute to mobility disability in older adults with and without MS. Older adults (≥55 years) with MS (n = 31) and age- and sex-matched controls (n = 22) completed measures of mobility (Short Physical Performance Battery) and cognitive processing speed (Symbol Digit Modalities Test) and underwent an MRI to obtain whole-brain metrics (gray matter volume, white matter volume, ventricular volume) as markers of atrophy. Mobility was significantly worse in the MS group than in the control group (p = 0.004). Spearman correlations indicated that neither cognitive processing speed (MS: r(s) = 0.26; Control: r(s) = 0.08) nor markers of global brain atrophy (MS: r(s) range = −0.30 to −0.06; Control: r(s) range = −0.40 to 0.16) were significantly associated with mobility in either group. Other factors such as subcortical gray matter structures, functional connectivity, exercise/physical activity, and cardiovascular fitness should be examined as factors that may influence mobility in aging adults with and without MS. |
---|