Cargando…
MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction
BACKGROUND: Unsupervised learning can discover various unseen abnormalities, relying on large-scale unannotated medical images of healthy subjects. Towards this, unsupervised methods reconstruct a 2D/3D single medical image to detect outliers either in the learned feature space or from high reconstr...
Autores principales: | Han, Changhee, Rundo, Leonardo, Murao, Kohei, Noguchi, Tomoyuki, Shimahara, Yuki, Milacski, Zoltán Ádám, Koshino, Saori, Sala, Evis, Nakayama, Hideki, Satoh, Shin’ichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073969/ https://www.ncbi.nlm.nih.gov/pubmed/33902457 http://dx.doi.org/10.1186/s12859-020-03936-1 |
Ejemplares similares
-
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features
por: de Farias, Erick Costa, et al.
Publicado: (2021) -
MADGAN:A microbe-disease association prediction model based on generative adversarial networks
por: Hu, Weixin, et al.
Publicado: (2023) -
Bridging the Gap Between AI and Healthcare Sides: Towards Developing Clinically Relevant AI-Powered Diagnosis Systems
por: Han, Changhee, et al.
Publicado: (2020) -
Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle
por: Escudero Sanchez, Lorena, et al.
Publicado: (2021) -
Tissue-specific and interpretable sub-segmentation of whole tumour burden on CT images by unsupervised fuzzy clustering
por: Rundo, Leonardo, et al.
Publicado: (2020)