Cargando…

Micro Salting-Out Assisted Matrix Solid-Phase Dispersion: A Simple and Fast Sample Preparation Method for the Analysis of Bisphenol Contaminants in Bee Pollen

In the present work, a novel sample preparation method, micro salting-out assisted matrix solid-phase dispersion (μ-SOA-MSPD), was developed for the determination of bisphenol A (BPA) and bisphenol B (BPB) contaminants in bee pollen. The proposed method was designed to combine two classical sample p...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jianing, Yu, Fengjie, Tao, Yunmin, Du, Chunping, Yang, Wenchao, Chen, Wenbin, Tu, Xijuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074014/
https://www.ncbi.nlm.nih.gov/pubmed/33919479
http://dx.doi.org/10.3390/molecules26082350
Descripción
Sumario:In the present work, a novel sample preparation method, micro salting-out assisted matrix solid-phase dispersion (μ-SOA-MSPD), was developed for the determination of bisphenol A (BPA) and bisphenol B (BPB) contaminants in bee pollen. The proposed method was designed to combine two classical sample preparation methodologies, matrix solid-phase dispersion (MSPD) and homogenous liquid-liquid extraction (HLLE), to simplify and speed-up the preparation process. Parameters of μ-SOA-MSPD were systematically investigated, and results indicated the significant effect of salt and ACN-H(2)O extractant on the signal response of analytes. In addition, excellent clean-up ability in removing matrix components was observed when primary secondary amine (PSA) sorbent was introduced into the blending operation. The developed method was fully validated, and the limits of detection for BPA and BPB were 20 μg/kg and 30 μg/kg, respectively. Average recoveries and precisions were ranged from 83.03% to 94.64% and 1.76% to 5.45%, respectively. This is the first report on the analysis of bisphenol contaminants in bee pollen sample, and also on the combination of MSPD and HLLE. The present method might provide a new strategy for simple and fast sample preparation of solid and semi-solid samples.