Cargando…
Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM
Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be...
Autores principales: | Srinivasu, Parvathaneni Naga, SivaSai, Jalluri Gnana, Ijaz, Muhammad Fazal, Bhoi, Akash Kumar, Kim, Wonjoon, Kang, James Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074091/ https://www.ncbi.nlm.nih.gov/pubmed/33919583 http://dx.doi.org/10.3390/s21082852 |
Ejemplares similares
-
ResNet-32 and FastAI for diagnoses of ductal carcinoma from 2D tissue slides
por: Praveen, S. Phani, et al.
Publicado: (2022) -
Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy
por: Vulli, Adarsh, et al.
Publicado: (2022) -
An End-to-End Steel Surface Classification Approach Based on EDCGAN and MobileNet V2
por: Jin, Ge, et al.
Publicado: (2023) -
Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet
por: Wang, Long, et al.
Publicado: (2023) -
Mobile-HR: An Ophthalmologic-Based Classification System for Diagnosis of Hypertensive Retinopathy Using Optimized MobileNet Architecture
por: Sajid, Muhammad Zaheer, et al.
Publicado: (2023)