Cargando…

The Role of Artificial Intelligence in Managing Multimorbidity and Cancer

Traditional healthcare paradigms rely on the disease-centered approach aiming at reducing human nature by discovering specific drivers and biomarkers that cause the advent and progression of diseases. This reductive approach is not always suitable to understand and manage complex conditions, such as...

Descripción completa

Detalles Bibliográficos
Autores principales: Cesario, Alfredo, D’Oria, Marika, Calvani, Riccardo, Picca, Anna, Pietragalla, Antonella, Lorusso, Domenica, Daniele, Gennaro, Lohmeyer, Franziska Michaela, Boldrini, Luca, Valentini, Vincenzo, Bernabei, Roberto, Auffray, Charles, Scambia, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074144/
https://www.ncbi.nlm.nih.gov/pubmed/33921621
http://dx.doi.org/10.3390/jpm11040314
_version_ 1783684288815824896
author Cesario, Alfredo
D’Oria, Marika
Calvani, Riccardo
Picca, Anna
Pietragalla, Antonella
Lorusso, Domenica
Daniele, Gennaro
Lohmeyer, Franziska Michaela
Boldrini, Luca
Valentini, Vincenzo
Bernabei, Roberto
Auffray, Charles
Scambia, Giovanni
author_facet Cesario, Alfredo
D’Oria, Marika
Calvani, Riccardo
Picca, Anna
Pietragalla, Antonella
Lorusso, Domenica
Daniele, Gennaro
Lohmeyer, Franziska Michaela
Boldrini, Luca
Valentini, Vincenzo
Bernabei, Roberto
Auffray, Charles
Scambia, Giovanni
author_sort Cesario, Alfredo
collection PubMed
description Traditional healthcare paradigms rely on the disease-centered approach aiming at reducing human nature by discovering specific drivers and biomarkers that cause the advent and progression of diseases. This reductive approach is not always suitable to understand and manage complex conditions, such as multimorbidity and cancer. Multimorbidity requires considering heterogeneous data to tailor preventing and targeting interventions. Personalized Medicine represents an innovative approach to address the care needs of multimorbid patients considering relevant patient characteristics, such as lifestyle and individual preferences, in opposition to the more traditional “one-size-fits-all” strategy focused on interventions designed at the population level. Integration of omic (e.g., genomics) and non-strictly medical (e.g., lifestyle, the exposome) data is necessary to understand patients’ complexity. Artificial Intelligence can help integrate and manage heterogeneous data through advanced machine learning and bioinformatics algorithms to define the best treatment for each patient with multimorbidity and cancer. The experience of an Italian research hospital, leader in the field of oncology, may help to understand the multifaceted issue of managing multimorbidity and cancer in the framework of Personalized Medicine.
format Online
Article
Text
id pubmed-8074144
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80741442021-04-27 The Role of Artificial Intelligence in Managing Multimorbidity and Cancer Cesario, Alfredo D’Oria, Marika Calvani, Riccardo Picca, Anna Pietragalla, Antonella Lorusso, Domenica Daniele, Gennaro Lohmeyer, Franziska Michaela Boldrini, Luca Valentini, Vincenzo Bernabei, Roberto Auffray, Charles Scambia, Giovanni J Pers Med Review Traditional healthcare paradigms rely on the disease-centered approach aiming at reducing human nature by discovering specific drivers and biomarkers that cause the advent and progression of diseases. This reductive approach is not always suitable to understand and manage complex conditions, such as multimorbidity and cancer. Multimorbidity requires considering heterogeneous data to tailor preventing and targeting interventions. Personalized Medicine represents an innovative approach to address the care needs of multimorbid patients considering relevant patient characteristics, such as lifestyle and individual preferences, in opposition to the more traditional “one-size-fits-all” strategy focused on interventions designed at the population level. Integration of omic (e.g., genomics) and non-strictly medical (e.g., lifestyle, the exposome) data is necessary to understand patients’ complexity. Artificial Intelligence can help integrate and manage heterogeneous data through advanced machine learning and bioinformatics algorithms to define the best treatment for each patient with multimorbidity and cancer. The experience of an Italian research hospital, leader in the field of oncology, may help to understand the multifaceted issue of managing multimorbidity and cancer in the framework of Personalized Medicine. MDPI 2021-04-19 /pmc/articles/PMC8074144/ /pubmed/33921621 http://dx.doi.org/10.3390/jpm11040314 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Cesario, Alfredo
D’Oria, Marika
Calvani, Riccardo
Picca, Anna
Pietragalla, Antonella
Lorusso, Domenica
Daniele, Gennaro
Lohmeyer, Franziska Michaela
Boldrini, Luca
Valentini, Vincenzo
Bernabei, Roberto
Auffray, Charles
Scambia, Giovanni
The Role of Artificial Intelligence in Managing Multimorbidity and Cancer
title The Role of Artificial Intelligence in Managing Multimorbidity and Cancer
title_full The Role of Artificial Intelligence in Managing Multimorbidity and Cancer
title_fullStr The Role of Artificial Intelligence in Managing Multimorbidity and Cancer
title_full_unstemmed The Role of Artificial Intelligence in Managing Multimorbidity and Cancer
title_short The Role of Artificial Intelligence in Managing Multimorbidity and Cancer
title_sort role of artificial intelligence in managing multimorbidity and cancer
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074144/
https://www.ncbi.nlm.nih.gov/pubmed/33921621
http://dx.doi.org/10.3390/jpm11040314
work_keys_str_mv AT cesarioalfredo theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT doriamarika theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT calvaniriccardo theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT piccaanna theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT pietragallaantonella theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT lorussodomenica theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT danielegennaro theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT lohmeyerfranziskamichaela theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT boldriniluca theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT valentinivincenzo theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT bernabeiroberto theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT auffraycharles theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT scambiagiovanni theroleofartificialintelligenceinmanagingmultimorbidityandcancer
AT cesarioalfredo roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT doriamarika roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT calvaniriccardo roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT piccaanna roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT pietragallaantonella roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT lorussodomenica roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT danielegennaro roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT lohmeyerfranziskamichaela roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT boldriniluca roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT valentinivincenzo roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT bernabeiroberto roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT auffraycharles roleofartificialintelligenceinmanagingmultimorbidityandcancer
AT scambiagiovanni roleofartificialintelligenceinmanagingmultimorbidityandcancer