Cargando…
The Role of Artificial Intelligence in Managing Multimorbidity and Cancer
Traditional healthcare paradigms rely on the disease-centered approach aiming at reducing human nature by discovering specific drivers and biomarkers that cause the advent and progression of diseases. This reductive approach is not always suitable to understand and manage complex conditions, such as...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074144/ https://www.ncbi.nlm.nih.gov/pubmed/33921621 http://dx.doi.org/10.3390/jpm11040314 |
_version_ | 1783684288815824896 |
---|---|
author | Cesario, Alfredo D’Oria, Marika Calvani, Riccardo Picca, Anna Pietragalla, Antonella Lorusso, Domenica Daniele, Gennaro Lohmeyer, Franziska Michaela Boldrini, Luca Valentini, Vincenzo Bernabei, Roberto Auffray, Charles Scambia, Giovanni |
author_facet | Cesario, Alfredo D’Oria, Marika Calvani, Riccardo Picca, Anna Pietragalla, Antonella Lorusso, Domenica Daniele, Gennaro Lohmeyer, Franziska Michaela Boldrini, Luca Valentini, Vincenzo Bernabei, Roberto Auffray, Charles Scambia, Giovanni |
author_sort | Cesario, Alfredo |
collection | PubMed |
description | Traditional healthcare paradigms rely on the disease-centered approach aiming at reducing human nature by discovering specific drivers and biomarkers that cause the advent and progression of diseases. This reductive approach is not always suitable to understand and manage complex conditions, such as multimorbidity and cancer. Multimorbidity requires considering heterogeneous data to tailor preventing and targeting interventions. Personalized Medicine represents an innovative approach to address the care needs of multimorbid patients considering relevant patient characteristics, such as lifestyle and individual preferences, in opposition to the more traditional “one-size-fits-all” strategy focused on interventions designed at the population level. Integration of omic (e.g., genomics) and non-strictly medical (e.g., lifestyle, the exposome) data is necessary to understand patients’ complexity. Artificial Intelligence can help integrate and manage heterogeneous data through advanced machine learning and bioinformatics algorithms to define the best treatment for each patient with multimorbidity and cancer. The experience of an Italian research hospital, leader in the field of oncology, may help to understand the multifaceted issue of managing multimorbidity and cancer in the framework of Personalized Medicine. |
format | Online Article Text |
id | pubmed-8074144 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80741442021-04-27 The Role of Artificial Intelligence in Managing Multimorbidity and Cancer Cesario, Alfredo D’Oria, Marika Calvani, Riccardo Picca, Anna Pietragalla, Antonella Lorusso, Domenica Daniele, Gennaro Lohmeyer, Franziska Michaela Boldrini, Luca Valentini, Vincenzo Bernabei, Roberto Auffray, Charles Scambia, Giovanni J Pers Med Review Traditional healthcare paradigms rely on the disease-centered approach aiming at reducing human nature by discovering specific drivers and biomarkers that cause the advent and progression of diseases. This reductive approach is not always suitable to understand and manage complex conditions, such as multimorbidity and cancer. Multimorbidity requires considering heterogeneous data to tailor preventing and targeting interventions. Personalized Medicine represents an innovative approach to address the care needs of multimorbid patients considering relevant patient characteristics, such as lifestyle and individual preferences, in opposition to the more traditional “one-size-fits-all” strategy focused on interventions designed at the population level. Integration of omic (e.g., genomics) and non-strictly medical (e.g., lifestyle, the exposome) data is necessary to understand patients’ complexity. Artificial Intelligence can help integrate and manage heterogeneous data through advanced machine learning and bioinformatics algorithms to define the best treatment for each patient with multimorbidity and cancer. The experience of an Italian research hospital, leader in the field of oncology, may help to understand the multifaceted issue of managing multimorbidity and cancer in the framework of Personalized Medicine. MDPI 2021-04-19 /pmc/articles/PMC8074144/ /pubmed/33921621 http://dx.doi.org/10.3390/jpm11040314 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Cesario, Alfredo D’Oria, Marika Calvani, Riccardo Picca, Anna Pietragalla, Antonella Lorusso, Domenica Daniele, Gennaro Lohmeyer, Franziska Michaela Boldrini, Luca Valentini, Vincenzo Bernabei, Roberto Auffray, Charles Scambia, Giovanni The Role of Artificial Intelligence in Managing Multimorbidity and Cancer |
title | The Role of Artificial Intelligence in Managing Multimorbidity and Cancer |
title_full | The Role of Artificial Intelligence in Managing Multimorbidity and Cancer |
title_fullStr | The Role of Artificial Intelligence in Managing Multimorbidity and Cancer |
title_full_unstemmed | The Role of Artificial Intelligence in Managing Multimorbidity and Cancer |
title_short | The Role of Artificial Intelligence in Managing Multimorbidity and Cancer |
title_sort | role of artificial intelligence in managing multimorbidity and cancer |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074144/ https://www.ncbi.nlm.nih.gov/pubmed/33921621 http://dx.doi.org/10.3390/jpm11040314 |
work_keys_str_mv | AT cesarioalfredo theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT doriamarika theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT calvaniriccardo theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT piccaanna theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT pietragallaantonella theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT lorussodomenica theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT danielegennaro theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT lohmeyerfranziskamichaela theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT boldriniluca theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT valentinivincenzo theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT bernabeiroberto theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT auffraycharles theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT scambiagiovanni theroleofartificialintelligenceinmanagingmultimorbidityandcancer AT cesarioalfredo roleofartificialintelligenceinmanagingmultimorbidityandcancer AT doriamarika roleofartificialintelligenceinmanagingmultimorbidityandcancer AT calvaniriccardo roleofartificialintelligenceinmanagingmultimorbidityandcancer AT piccaanna roleofartificialintelligenceinmanagingmultimorbidityandcancer AT pietragallaantonella roleofartificialintelligenceinmanagingmultimorbidityandcancer AT lorussodomenica roleofartificialintelligenceinmanagingmultimorbidityandcancer AT danielegennaro roleofartificialintelligenceinmanagingmultimorbidityandcancer AT lohmeyerfranziskamichaela roleofartificialintelligenceinmanagingmultimorbidityandcancer AT boldriniluca roleofartificialintelligenceinmanagingmultimorbidityandcancer AT valentinivincenzo roleofartificialintelligenceinmanagingmultimorbidityandcancer AT bernabeiroberto roleofartificialintelligenceinmanagingmultimorbidityandcancer AT auffraycharles roleofartificialintelligenceinmanagingmultimorbidityandcancer AT scambiagiovanni roleofartificialintelligenceinmanagingmultimorbidityandcancer |