Cargando…
Chronic High Fat Diet Intake Impairs Hepatic Metabolic Parameters in Ovariectomized Sirt3 KO Mice
High fat diet (HFD) is an important factor in the development of metabolic diseases, with liver as metabolic center being highly exposed to its influence. However, the effect of HFD-induced metabolic stress with respect to ovary hormone depletion and sirtuin 3 (Sirt3) is not clear. Here we investiga...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074326/ https://www.ncbi.nlm.nih.gov/pubmed/33924115 http://dx.doi.org/10.3390/ijms22084277 |
_version_ | 1783684330219896832 |
---|---|
author | Pinterić, Marija Podgorski, Iva I. Popović Hadžija, Marijana Tartaro Bujak, Ivana Tadijan, Ana Balog, Tihomir Sobočanec, Sandra |
author_facet | Pinterić, Marija Podgorski, Iva I. Popović Hadžija, Marijana Tartaro Bujak, Ivana Tadijan, Ana Balog, Tihomir Sobočanec, Sandra |
author_sort | Pinterić, Marija |
collection | PubMed |
description | High fat diet (HFD) is an important factor in the development of metabolic diseases, with liver as metabolic center being highly exposed to its influence. However, the effect of HFD-induced metabolic stress with respect to ovary hormone depletion and sirtuin 3 (Sirt3) is not clear. Here we investigated the effect of Sirt3 in liver of ovariectomized and sham female mice upon 10 weeks of feeding with standard-fat diet (SFD) or HFD. Liver was examined by Folch, gas chromatography and lipid hydroperoxide analysis, histology and oil red staining, RT-PCR, Western blot, antioxidative enzyme and oxygen consumption analyses. In SFD-fed WT mice, ovariectomy increased Sirt3 and fatty acids synthesis, maintained mitochondrial function, and decreased levels of lipid hydroperoxides. Combination of ovariectomy and Sirt3 depletion reduced pparα, Scd-1 ratio, MUFA proportions, CII-driven respiration, and increased lipid damage. HFD compromised CII-driven respiration and activated peroxisomal ROS scavenging enzyme catalase in sham mice, whereas in combination with ovariectomy and Sirt3 depletion, increased body weight gain, expression of NAFLD- and oxidative stress-inducing genes, and impaired response of antioxidative system. Overall, this study provides evidence that protection against harmful effects of HFD in female mice is attributed to the combined effect of female sex hormones and Sirt3, thus contributing to preclinical research on possible sex-related therapeutic agents for metabolic syndrome and associated diseases. |
format | Online Article Text |
id | pubmed-8074326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80743262021-04-27 Chronic High Fat Diet Intake Impairs Hepatic Metabolic Parameters in Ovariectomized Sirt3 KO Mice Pinterić, Marija Podgorski, Iva I. Popović Hadžija, Marijana Tartaro Bujak, Ivana Tadijan, Ana Balog, Tihomir Sobočanec, Sandra Int J Mol Sci Article High fat diet (HFD) is an important factor in the development of metabolic diseases, with liver as metabolic center being highly exposed to its influence. However, the effect of HFD-induced metabolic stress with respect to ovary hormone depletion and sirtuin 3 (Sirt3) is not clear. Here we investigated the effect of Sirt3 in liver of ovariectomized and sham female mice upon 10 weeks of feeding with standard-fat diet (SFD) or HFD. Liver was examined by Folch, gas chromatography and lipid hydroperoxide analysis, histology and oil red staining, RT-PCR, Western blot, antioxidative enzyme and oxygen consumption analyses. In SFD-fed WT mice, ovariectomy increased Sirt3 and fatty acids synthesis, maintained mitochondrial function, and decreased levels of lipid hydroperoxides. Combination of ovariectomy and Sirt3 depletion reduced pparα, Scd-1 ratio, MUFA proportions, CII-driven respiration, and increased lipid damage. HFD compromised CII-driven respiration and activated peroxisomal ROS scavenging enzyme catalase in sham mice, whereas in combination with ovariectomy and Sirt3 depletion, increased body weight gain, expression of NAFLD- and oxidative stress-inducing genes, and impaired response of antioxidative system. Overall, this study provides evidence that protection against harmful effects of HFD in female mice is attributed to the combined effect of female sex hormones and Sirt3, thus contributing to preclinical research on possible sex-related therapeutic agents for metabolic syndrome and associated diseases. MDPI 2021-04-20 /pmc/articles/PMC8074326/ /pubmed/33924115 http://dx.doi.org/10.3390/ijms22084277 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pinterić, Marija Podgorski, Iva I. Popović Hadžija, Marijana Tartaro Bujak, Ivana Tadijan, Ana Balog, Tihomir Sobočanec, Sandra Chronic High Fat Diet Intake Impairs Hepatic Metabolic Parameters in Ovariectomized Sirt3 KO Mice |
title | Chronic High Fat Diet Intake Impairs Hepatic Metabolic Parameters in Ovariectomized Sirt3 KO Mice |
title_full | Chronic High Fat Diet Intake Impairs Hepatic Metabolic Parameters in Ovariectomized Sirt3 KO Mice |
title_fullStr | Chronic High Fat Diet Intake Impairs Hepatic Metabolic Parameters in Ovariectomized Sirt3 KO Mice |
title_full_unstemmed | Chronic High Fat Diet Intake Impairs Hepatic Metabolic Parameters in Ovariectomized Sirt3 KO Mice |
title_short | Chronic High Fat Diet Intake Impairs Hepatic Metabolic Parameters in Ovariectomized Sirt3 KO Mice |
title_sort | chronic high fat diet intake impairs hepatic metabolic parameters in ovariectomized sirt3 ko mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074326/ https://www.ncbi.nlm.nih.gov/pubmed/33924115 http://dx.doi.org/10.3390/ijms22084277 |
work_keys_str_mv | AT pintericmarija chronichighfatdietintakeimpairshepaticmetabolicparametersinovariectomizedsirt3komice AT podgorskiivai chronichighfatdietintakeimpairshepaticmetabolicparametersinovariectomizedsirt3komice AT popovichadzijamarijana chronichighfatdietintakeimpairshepaticmetabolicparametersinovariectomizedsirt3komice AT tartarobujakivana chronichighfatdietintakeimpairshepaticmetabolicparametersinovariectomizedsirt3komice AT tadijanana chronichighfatdietintakeimpairshepaticmetabolicparametersinovariectomizedsirt3komice AT balogtihomir chronichighfatdietintakeimpairshepaticmetabolicparametersinovariectomizedsirt3komice AT sobocanecsandra chronichighfatdietintakeimpairshepaticmetabolicparametersinovariectomizedsirt3komice |