Cargando…
Efficiently Classifying Lung Sounds through Depthwise Separable CNN Models with Fused STFT and MFCC Features
Lung sounds remain vital in clinical diagnosis as they reveal associations with pulmonary pathologies. With COVID-19 spreading across the world, it has become more pressing for medical professionals to better leverage artificial intelligence for faster and more accurate lung auscultation. This resea...
Autores principales: | Jung, Shing-Yun, Liao, Chia-Hung, Wu, Yu-Sheng, Yuan, Shyan-Ming, Sun, Chuen-Tsai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074359/ https://www.ncbi.nlm.nih.gov/pubmed/33924146 http://dx.doi.org/10.3390/diagnostics11040732 |
Ejemplares similares
-
COVID-19 disease diagnosis with light-weight CNN using modified MFCC and enhanced GFCC from human respiratory sounds
por: Kranthi Kumar, Lella, et al.
Publicado: (2022) -
Speech Enhancement in the STFT Domain
por: Benesty, Jacob, et al.
Publicado: (2012) -
A multi-scale gated multi-head attention depthwise separable CNN model for recognizing COVID-19
por: Hong, Geng, et al.
Publicado: (2021) -
Applicability of VGGish embedding in bee colony monitoring: comparison with MFCC in colony sound classification
por: Di, Nayan, et al.
Publicado: (2023) -
WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis
por: Monday, Happy Nkanta, et al.
Publicado: (2022)