Cargando…
A deep learning pipeline for automatic analysis of multi-scan cardiovascular magnetic resonance
BACKGROUND: Cardiovascular magnetic resonance (CMR) sequences are commonly used to obtain a complete description of the function and structure of the heart, provided that accurate measurements are extracted from images. New methods of extraction of information are being developed, among them, deep n...
Autores principales: | Fadil, Hakim, Totman, John J., Hausenloy, Derek J., Ho, Hee-Hwa, Joseph, Prabath, Low, Adrian Fatt-Hoe, Richards, A. Mark, Chan, Mark Y., Marchesseau, Stephanie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074440/ https://www.ncbi.nlm.nih.gov/pubmed/33896419 http://dx.doi.org/10.1186/s12968-020-00695-z |
Ejemplares similares
-
Ejection and filling rates assessed from cardiac magnetic resonance imaging: possible indices of Degenerative Mitral Valve Regurgitation
por: Marchesseau, Stephanie, et al.
Publicado: (2016) -
Influence of the short-axis cine acquisition protocol on the cardiac function evaluation: A reproducibility study
por: Marchesseau, Stephanie, et al.
Publicado: (2016) -
Comparison of four short axis cine acquisition protocols for the evaluation of left ventricular cardiac function
por: Marchesseau, Stephanie, et al.
Publicado: (2015) -
Automatic Annotation of Subsea Pipelines Using Deep Learning
por: Stamoulakatos, Anastasios, et al.
Publicado: (2020) -
A Computer-Aided Pipeline for Automatic Lung Cancer Classification on Computed Tomography Scans
por: Dandıl, Emre
Publicado: (2018)