Cargando…

Temporal trends in physical activity levels across more than a decade – a national physical activity surveillance system among Norwegian children and adolescents

BACKGROUND: There is a scarcity of device measured data on temporal changes in physical activity (PA) in large population-based samples. The purpose of this study is to describe gender and age-group specific temporal trends in device measured PA between 2005, 2011 and 2018 by comparing three nationa...

Descripción completa

Detalles Bibliográficos
Autores principales: Steene-Johannessen, Jostein, Anderssen, Sigmund Alfred, Kolle, Elin, Hansen, Bjørge Herman, Bratteteig, Mari, Dalhaug, Emilie Mass, Andersen, Lars Bo, Nystad, Wenche, Ekelund, Ulf, Dalene, Knut Eirik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074468/
https://www.ncbi.nlm.nih.gov/pubmed/33902618
http://dx.doi.org/10.1186/s12966-021-01120-z
Descripción
Sumario:BACKGROUND: There is a scarcity of device measured data on temporal changes in physical activity (PA) in large population-based samples. The purpose of this study is to describe gender and age-group specific temporal trends in device measured PA between 2005, 2011 and 2018 by comparing three nationally representative samples of children and adolescents. METHODS: Norwegian children and adolescents (6, 9 and 15-year-olds) were invited to participate in 2005 (only 9- and 15-year-olds), 2011 and 2018 through cluster sampling (schools primary sampling units). A combined sample of 9500 individuals participated. Physical activity was assessed by hip worn accelerometers, with PA indices including overall PA (counts per minute), moderate-to-vigorous intensity PA (MVPA), and PA guideline adherence (achieving on average ≥ 60 min/day of moderate-to-vigorous PA). Random-effects linear regressions and logistic regressions adjusted for school-level clusters were used to analyse temporal trends. FINDINGS: In total, 8186 of the participating children and adolescents provided valid PA data. Proportions of sufficiently active 6-year-olds were almost identical in 2011 and 2018; boys 95% (95% CI: 92, 97) and 94% (95%CI: 92, 96) and girls 86% (95% CI: 83, 90) and 86% (95% CI: 82, 90). Proportions of sufficiently active 15-year-olds in 2005 and 2018 were 52% (95% CI: 46, 59) and 55% (95% CI: 48, 62) in boys, and 48% (95% CI: 42, 55) and 44% (95% CI: 37, 51) in girls, respectively, resulting from small differences in min/day of MVPA. Among 9-year-old boys and girls, proportions of sufficiently active declined between 2005 and 2018, from 90% (95% CI: 87, 93) to 84% (95% CI: 80, 87)) and 74% (95% CI: 69, 79) to 68% (95% CI: 64, 72), respectively. This resulted from 9.7 min/day less MVPA in boys (95% CI: − 14.8, − 4.7; p < 0.001) and 3.2 min/day less MVPA (95% CI: − 7.0, 0.7; p = 0.106) in girls. CONCLUSIONS: PA levels have been fairly stable between 2005, 2011 and 2018 in Norwegian youth. However, the declining PA level among 9-year-old boys and the low proportion of 15-year-olds sufficiently active is concerning. To evaluate the effect of, and plan for new, PA promoting strategies, it is important to ensure more frequent, systematic, device-based monitoring of population-levels of PA. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12966-021-01120-z.