Cargando…
A new Bayesian piecewise linear regression model for dynamic network reconstruction
BACKGROUND: Linear regression models are important tools for learning regulatory networks from gene expression time series. A conventional assumption for non-homogeneous regulatory processes on a short time scale is that the network structure stays constant across time, while the network parameters...
Autores principales: | Shafiee Kamalabad, Mahdi, Grzegorczyk, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074473/ https://www.ncbi.nlm.nih.gov/pubmed/33902443 http://dx.doi.org/10.1186/s12859-021-03998-9 |
Ejemplares similares
-
Partially non-homogeneous dynamic Bayesian networks based on Bayesian regression models with partitioned design matrices
por: Shafiee Kamalabad, Mahdi, et al.
Publicado: (2019) -
Non-homogeneous dynamic Bayesian networks with edge-wise sequentially coupled parameters
por: Shafiee Kamalabad, Mahdi, et al.
Publicado: (2020) -
Network-based piecewise linear regression for QSAR modelling
por: Cardoso-Silva, Jonathan, et al.
Publicado: (2019) -
Estimating mono- and bi-phasic regression parameters using a mixture piecewise linear Bayesian hierarchical model
por: Zhao, Rui, et al.
Publicado: (2017) -
A Bayesian piecewise linear model for the detection of breakpoints in housing prices
por: Tomal, Jabed H., et al.
Publicado: (2021)