Cargando…
Comparative study of machine learning methods for COVID-19 transmission forecasting
Within the recent pandemic, scientists and clinicians are engaged in seeking new technology to stop or slow down the COVID-19 pandemic. The benefit of machine learning, as an essential aspect of artificial intelligence, on past epidemics offers a new line to tackle the novel Coronavirus outbreak. Ac...
Autores principales: | Dairi, Abdelkader, Harrou, Fouzi, Zeroual, Abdelhafid, Hittawe, Mohamad Mazen, Sun, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074522/ https://www.ncbi.nlm.nih.gov/pubmed/33915272 http://dx.doi.org/10.1016/j.jbi.2021.103791 |
Ejemplares similares
-
Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study
por: Zeroual, Abdelhafid, et al.
Publicado: (2020) -
Forecasting emergency department overcrowding: A deep learning framework
por: Harrou, Fouzi, et al.
Publicado: (2020) -
EEG-Based Mental Tasks Recognition via a Deep Learning-Driven Anomaly Detector
por: Dairi, Abdelkader, et al.
Publicado: (2022) -
Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework
por: Kadri, Farid, et al.
Publicado: (2022) -
A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models
por: Alali, Yasminah, et al.
Publicado: (2022)