Cargando…
Temperature surpasses the effects of velocity and turbulence on swimming performance of two invasive non-native fish species
Global climate change continues to impact fish habitat quality and biodiversity, especially in regard to the dynamics of invasive non-native species. Using individual aquaria and an open channel flume, this study evaluated the effects of water temperature, flow velocity and turbulence interactions o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074586/ https://www.ncbi.nlm.nih.gov/pubmed/33972857 http://dx.doi.org/10.1098/rsos.201516 |
Sumario: | Global climate change continues to impact fish habitat quality and biodiversity, especially in regard to the dynamics of invasive non-native species. Using individual aquaria and an open channel flume, this study evaluated the effects of water temperature, flow velocity and turbulence interactions on swimming performance of two lentic, invasive non-native fish in the UK, pumpkinseed (Lepomis gibbosus) and topmouth gudgeon (Pseudorasbora parva). Burst and sustained swimming tests were conducted at 15, 20 and 25°C. Acoustic Doppler velocimetry was used to measure the flume hydrodynamic flow characteristics. Both L. gibbosus and P. parva occupied the near-bed regions of the flume, conserving energy and seeking refuge in the low mean velocities flow areas despite the relatively elevated turbulent fluctuations, a behaviour which depended on temperature. Burst swimming performance and sustained swimming increased by up to 53% as temperature increased from 15 to 20°C and 71% between 15 and 25°C. Furthermore, fish test area occupancy was dependent on thermal conditions, as well as on time-averaged velocities and turbulent fluctuations. This study suggests that invasive species can benefit from the raised temperatures predicted under climate change forecasts by improving swimming performance in flowing water potentially facilitating their further dispersal and subsequent establishment in lotic environments. |
---|